JUMPING CHAMPIONS

ANDREW ODLYZKO, MICHAEL RUBINSTEIN, AND MAREK WOLF

Abstract: The asymptotic frequency with which pairs of primes below x differ by some
fixed integer is understood heuristically, although not rigorously, through the Hardy-
Littlewood k-tuple conjecture. Less is known about the differences of consecutive primes.
For all 2 between 1000 and 10'2, the most common difference between consecutive primes
is 6. We present heuristic and empirical evidence that 6 continues as the most common
difference (jumping champion) up to about z = 1.7427 - 10, where it is replaced by
30. In turn, 30 is eventually displaced by 210, which then is displaced by 2310, and so
on. Our heuristic arguments are based on a quantitative form of the Hardy-Littlewood
conjecture. The technical difficulties in dealing with consecutive primes are formidable
enough that even that strong conjecture does not suffice to produce a rigorous proof

about the behavior of jumping champions.

1. INTRODUCTION

An integer D is called a jumping champion if D is the most frequently occurring
difference between consecutive primes < z for some z (occasionally there are several
jumping champions). Since the initial primes are 2,3,5,7,11, the jumping champions
are 1 for x =3, 1 and 2 for x =5, 2 for x = 7, and 2 for x = 11. (It is clear that we
only need to consider prime values of z.)

Jumping champions for various = up to around 1000 are presented in Table 1. Initially
2 and 4 dominate as jumping champions, with 2 showing up more frequently than 4,
and 6 showing up only a few times. However, at * = 563, D = 6 takes over as jumping
champion, and except for z = 941, where it shares leadership with D = 4, is the only
champion at least up to z = 10'2. One might therefore be led to conclude that 6 should
remain the jumping champion out to infinity. However, this appears to be another of
the many number theoretic functions where the initial behavior is misleading. We will
present heuristics that suggest that 6 does not remain jumping champion forever.

Conjecture 1. The jumping champions are 4 and the primorials 2, 6, 30,210, 2310, ... . .
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The heuristics (see Section 2) suggest that 6 is the jumping champion up to about
x = 1.7427-10%°, where 30 becomes the jumping champion. (Harley [8], stimulated by a
report on an early phase of our research, has independently computed this number as the
point of transition between 6 and 30.) In turn, 30 is displaced as jumping champion by
210 around z = 10*?°. This is substantiated by numerical experimentation (see the end
of Section 2 and Table 3). It is likely that in the transition zones, the two contenders in
all cases trade places as jumping champions, but we have neither the computing power
to verify this numerically nor the theoretical tools to prove it. Although Conjecture 1 is
very simple and elegant, it is surprisingly deep.

The heuristics we develop are based on the famous Hardy-Littlewood k-tuple conjec-
ture. The twin prime conjecture says that there exist infinitely many primes p such that
p + 2 is also a prime. On the other hand, there is only a single prime p such that p,
p+ 2, and p + 4 are all primes, since at least one of these 3 integers is divisible by 3.
The Hardy-Littlewood k-tuple conjecture [9] is that unless there is a trivial divisibility
condition that stops p,p+ ay,...,p+ ai from consisting of primes infinitely often, then
such prime tuples will occur, and will even occur with a certain asympotic density that
is easy to compute in terms of the a;. While there is a general belief that the k-tuple
conjecture is true, it remains unproven.

There seems to be little hope of making any progress towards a proof of Conjecture 1
without assuming at least a quantitative form of the k-tuple conjecture. However, as we
will show, even assuming the strongest form of that conjecture that seems reasonable
in view of our knowledge of prime numbers, we are still left with formidable obstacles
that prevent us from obtaining a complete proof of Conjecture 1. Still, in investigating
jumping champions, we are led to some nice combinatorics related to the coefficients in
the k-tuple conjecture.

A strong form of the k-tuple conjecture leads to an explicit asymptotic formula for the
frequency with which an integer D appears as the difference of consecutive primes < z.
This formula has some interesting arithmetical properties, and it leads to the "irregularly
regular” behavior shown in Figure 2. Brent [2] was the first to suggest this formula and
gave an algorithm for computing certain coefficients that arise in the formula.

A conjecture that follows from Conjecture 1, but should be considerably easier to
prove, and might conceivably be provable unconditionally, is the following.

Conjecture 2. The jumping champions tend to infinity. Furthermore, any fixed prime
p divides all sufficiently large jumping champions.

The first part of Conjecture 2 was proved by Erdés and Straus [4] under the assumption
of a quantitative form of the k-tuple conjecture.



JUMPING CHAMPIONS 3

As far as we are aware, the first question about the behavior of jumping champions
was raised (without use of the term jumping champion, which was invented by John
Horton Conway in 1993) by Harry Nelson in 1977-8 [13]. Erdds and Straus, motivated
by Nelson’s note, proved, under the assumption of a form of the k-tuple conjecture,
that jumping champions for = tend to infinity with x. They also raised the question
of the rate at which champions tend to infinity. We answer this question in our note,
assuming (as Erdds and Straus suggested might have to be done) stronger conjectures.
These suggest that the size of the champion jumps from (1 + o(1))log z/(loglog z)?
to (1 + o(1))log z/(loglog ) when z is the transition point, and then, as z increases,
proceeds to decrease down to (1 + o(1))log z/(loglog x)? again.

Jumping champions have been thought about independently several times since the
work of Erdos and Straus. We were led to look at them by John Conway. Meally and
Leech have also asked about their behavior [7].

2. THE HEURISTICS

2.1. The k-tuple Conjecture. Let 0 < m; < my < ... < my. The k-tuple conjecture
predicts that the number of primes p < x such that p + 2m,p + 2m,, ... ,p + 2my are
all prime is

Todl
P(‘/E;mlvm%"' 7mk)NC(m17m27"' 7mk)/2 logki—f-lt (21>
where
_ ok (1_w(Q;m17m27"' 7mk)/Q)
C(my,ma, ... ,my) =2 1;[ 1/ . (2.2)
In (2.2), g runs over all odd primes, and w(q; m1,m2,... ,my) denotes the number of

distinct residues of 0,my, mg, ... ,mg mod g. Note that if £ =1 then

C(m) =2 1:[ ((ff]q__jz I1 (g — ;; (2.3)

i (q

depends only on the odd primes dividing m, and C(m) = C(my) iff m; and my have
the same odd prime factors (possibly raised to different powers).

For a discussion on the k-tuple conjecture and references to numerical computations
in its support, see the introduction to Halberstam and Richert [10].

Brent [3] [2] was apparently the first one to study the size of the error term in the
k-tuple conjecture. Hardy and Littlewood did not make any predictions about its size,
although the standard arguments that assume random cancellation of various terms
suggest it should be of size about /z for each k-tuple. Brent’s computations [3, Table
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4] support this suggestion for tuples p,p + 2 where we find a remainder with roughly
half as many digits as the main term. See also the comment following (2.7).

2.2. The Heuristics. Let N(z,d) be the number of primes p < z such that p + 2d is
the smallest prime > p. By inclusion-exclusion we have

2K

N(z,d) < > (=D Y Playm,...,mpd), K=01,... (24)

k=0 0<m<...<mp<d
2K+1

N(z,d) = > (=D)F Y Plasma, ... ,mg,d) (2.5)
k=0 0<m<...<m<d

(here the & = 0 term is P(x;d)). So it is natural to compare N(z,d) with

[3 26)

“ log

where M is a positive integer and

Agp = (—1)F+ > C(my,... ,mu_1,d) (2.7)
0<m <. <my_q <d
(here Agx = C(d)).

Computations of Brent [2] indicate that taking all the terms in (2.6) (i.e. M is chosen
so that Agarq1 = 0) approximates N(z,d) to within O(z'/?). This can be seen in [2,
Table 2] which shows an agreement (between theoretical approximation and reality) that
agrees to roughly half the decimal places.

Now, the sum in (2.7) runs over (z 1) terms and it would not be unreasonable to

guess that Agj grows nicely with this binomial coefficient. In fact, we show in Section

3, Theorem 1 that for k fixed,

(24)"
k!

This suggests, in conjuction with (2.6), that, for d large,

¥ ex 2d/ log t
N(x,d)NAdJ/z p(= o /t el) (2.8)

Ad,k-i—l ~ (—1)kAd71 as d — oo.

should approximate well the number of gaps of size 2d up to height z. However, not
only does d have to be large for this to be a good approximation, but = has to be large
compared to d, and this restricts the range in which we may use (2.8).

The presence of the Ag; factor in (2.8) indicates that, in order to make N(z,d)
huge, it is preferable for d to have many small prime factors. On the other hand, the



JUMPING CHAMPIONS 5

exp(—2d/logt) term in the integrand tells us that amongst all d that produce the same
value for Ay, the smallest one wins. More precisely, let

2dy = 2%p{! ...pjj
2; = 2-3-...q;

where a; > 1, where the p;’s are odd primes, and where ¢; is the jth odd prime (¢
3,q2 =5,...). Note that d3s < dy < d.

Formula (2.8) tells us that, for ds sufficiently large, we should expect N(z,d3)
N(z,dy) (because Ay, 1 = Ag 1 but dy < dy), and N(z,ds) > N(z,ds) (because Ag, 1

Ag,1 and ds < d3). So we see that primorials are favored.

>
>

Furthermore, integrating (2.8) by parts, we find that N(z,3-...¢;4+1) should begin to
overtake N(z,3-...¢q;) roughly when

1 — 1 —2-3-...q —2-3-...q
qi+1 exp ( q]+1> > exp ( %)
Gj+1 — 2 log x log x

i.e. roughly when

z>exp(2-3-...q; (g4 — 1)1 — 2)).

These considerations justify Conjecture 1, at least for sufficiently large gaps (and very
large z). For smaller d, rather than using (2.8), we could use the first few terms of (2.6)
to study N(z,d).

For example, A;; = Az1, and Ay = 0 (since there are no triplets of primes p,p +

2, p+4 other than 3,5,7). Hence both both N(z,1) and N(z,2) should be very close to

Todt
A171 / — -
2 log t

This explains why 4 also appears as a champion.

We can also determine roughly when 30 will take over from 6 as Champion, and when
210 will first beat 30. Using the coefficients from [2] to compute (2.6) with all the terms
(M = 2 when 2d = 6 and M = 8 when 2d = 30), we find that 30 should take over as
Champion roughly at = 1.7427 - 10°°. Further, taking M = 4 terms in (2.6), predicts
that 210 will first begin to beat 30 sometime in the interval 10**® < z < 10**%. Numerical
experimentation substantiates these claims. We used Maple’s probable prime function
to test intervals of length 107. If all the probable primes that this function produced for
us are indeed prime, then in the interval [10%°,10%° 4 107] there are 5278 gaps of size 6,
and 5060 gaps of size 30, whereas in the interval [10°,10%° + 107] there are 3120 gaps of
size 6 and 3209 gaps of size 30. (Note that even if some of the probable primes we found
are not prime, it is extremely likely there are few of them, so the statistics we produce
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would not be noticeably affected.) Further, in the intervals [10%9°,10%° + 107] we find
that gaps of size 30 and 210 show up 50 and 33 times, respectively, and 26 and 34 times
in the interval [10%5°,10%5° 4- 107]. These last results are only roughly indicative of true
behavior, since sample sizes are so small. In fact, in our data for 10%5°, 198 appears to
be the champion, as it shows up as a gap of consecutive primes 40 times!

Section 3 is devoted to studying the coefficients Ay that appear in (2.6).

3. THE COEFFICIENTS Agy

We turn now to the problem of estimating the coefficients Ay that appear in (2.6).
In this section we use the 'Big Oh’ notation. @ = O(b) is equivalent to |a| < K |b| for
some constant K. a = 0.(b) is equivalent to |a| < K(¢) |b| for some K (¢).

We can prove (unconditionally)

Theorem 1. Let 1 <k < cloglogd, where ¢ is a constant. Then,

2d
Ad,k-i—l = _Ad,k? (1 + Oc(k/ 10g 10g d)) (31)

Remark . Numerical data suggests (see Figure 3) that the 1+ O.(k/loglog d) above can
be replaced by 1 + O(klogd/d).

Proof. First observe that if A;; = 0 then A1 = 0 and the theorem holds trivially.
(Aqr = 0 implies that all p,p+ 2my,... ,p+ 2my_1, p+ 2d tuples are ruled out. Hence,
so are all the p,p+2mq,... ,p+ 2my, p + 2d tuples, because each one contains (many)
pyp+2ma, ... ,p+2mg_1,p+ 2d sub-tuples). Therefore, assume Ay # 0. From (2.2)
and (2.7) we have

-2 > Hq (1 —w(g;my,ma, ... ,mg,d)/q)

Agr > 1, (1 = w(g;mi,ma, ... ,me_y,d)/q) (1 =1/q)

0<m<...<mp_1<d

(if & = 1, the denominator is [], (1 —w(g;d)/q) (1 — 1/q)). Now, if ¢ > d then,
w(g;my, ma, ... ,my,d) =k+2,and w(g;my,ms,... ,my_1,d) = k+ 1. So the above is

Ak

— 2P, P 3.2
Aor e (3.2)

with
2 [I,cq (1 —wlg;mi,ma,... ,my, d)/q)

0<m <...<my<d

> Hqu (1 —wlgsmi,mo, ... ,my_1,d)/q) (1 —1/q) (3.3)

0<m<...<mp_1<d

P1:
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and

_ (1—(k+2)/q)
rella=gaa = o o

P, poses little difficulty and is easily estimated by using the Taylor series for log(1 — ),

Pzzexp( mz:?; <<k+2> (%)m_qi”))’ k+2§d.(3.5)

Now

g>d

0<(k+2)"—(k+1)" =1 <m(k+2)""", m > 2

which can be seen by writing

(k+2)" —(k+ )" =(k+2)" "+ (k+2)" *(k+1)+...+ (k+1)""

Hence
- 1
1> P, >exp (— (k+2)m_127).
m=2 g>d q
But
1 =1 dt 1 1
_m Z nm / _(m_l)dm—l’
>d =d+1
SO
- 1 k4 2)™1 k+2
1>P2>6Xp<_z(m_1)( ;m_)l ):1—%, k+2<d.
i.e.
P, = 1—|—O(k/d), kE+2<d. (3.6)

In fact, a better estimate is not hard to establish. Since (3.6) contributes less than the
error claimed in the theorem, we omit the proof and simply state

2 1 2
Py=1— " k< dj2. .
: Tlogd ¢ (dlogd + dlog2d>’ <df (3.7)

Next, consider P;. On scrutinizing (3.3), we see that each term in the denominator may

be matched with terms in the numerator. We write

E p 0<E<d Hqu (1 - w(Qa mo,Mi,. .. 7mk—17d)/Q>
P o 10<m1<.“<mk_1< mo#m;;t 01 Jk—1
1= —
k 0 E quSd (1_w(Q;m17m27"‘ 7mk—17d)/Q) (]‘_1/Q) (3 8)
<mi<..<mi_1< .
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and claim that each inner sum in the numerator is approximately d times its corre-
sponding term in the denominator. More precisely, we show that, for & < cloglogd (¢
a constant),

Z H(l—w(q;mo,ml,... yMm—1,d)/q)

0<mg <d ¢<d
S

mo#Em;;i=1,... k—

=d(1 + O.(k/loglog d)) H (1 —w(g;my,ma, ... ,mp_1,d)/q) (1 —1/q). (3.9)

q<d

The theorem would then follow on combining (3.9) with (3.8), (3.6), and (3.2).
To prove (3.9), break up [], ., into two pieces. Let

35 ... qu<d<3-5 ... qus, d>15 (3.10)

and write
I1=1I II - (3.11)
g<d  9<qga—1 9a<g<d

By the Prime Number Theorem,

qa ~ logd. (3.12)
Now, if the r.h.s. of (3.9) is zero (this happens if w(q;mq,... ,mi_1,d) = ¢ for some
g < d) then so is the Lh.s (since then w(q; mg, m1,... ,mg_1,d) also equals ¢), and (3.9)

is trivially true. So, assume that this isn’t the case and consider

2. IT II 70me,. . imed), (3.13)

0<mq <d 9<9a—1 94 <q<d
. <g<

R
where

(1 —w(g;mo,my,... ,mg_1,d)/q)
(1 —w(g;my,ma, ... ,myp_1,d)/q) (1 —1/q)
To simplify things, (3.13) may be written as

- 1
> AL 1 fq(mow7mk_1’d)_k111_1/q'

mo=1q¢<ga—1 9<q<d

fq(mo, . ,mk_l,d) =

The second term above is O(klog d) (in fact, by a theorem of Mertens [11], it contributes
~ —%e” log d) and will be overshadowed by the first term. So, let

S=> 11 1II f.mo,--- .mu,d). (3.14)

mo=19<qa—1 qa<q<d
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Our goal is to show S = d(1 4+ O(k/loglogd)). We first estimate the contribution from
I1,.<,<q- Letting w, = w(g;mi,... ,mi_1,d), we have

W, if g | mo(my —mg)...(mr_1 —mo)(d —my)
w(q;mo,ma, ... ,mp_1,d) = ‘
w, +1 otherwise. (3.15)

For most ¢ (when k is small compared to d) the latter holds. In fact, let L be the number
of ¢’s that satisfy

l.g<q<d
2. q| mo(my —mg)...(Mmk—1 —mo)(d — myg).

Now, mo(m; — mg) ... (mg_1 — mo)(d — mg) < d**', and so ¢~ < d**'. Hence, from

(3.12),
klog d
L=0 <log o d) . (3.16)

But

1—(k+2)/q
11 (1-1/9)01 = (k+1)/q) < Il 5 1—1/qa)

72<q<d 9a<q<d
The L.h.s above is roughly of the same form as (3.4), and by (3.6), it is 1 + O(k/q.) =
1+ O(k/logd), (so long as k < (g, — 2) ~ log d). Meanwhile,
1

(1 - 1/Qa)L

_ eO(k/ loglogd)
= 1+ 0.(k/loglogd),

assuming k < cloglogd, ¢ a constant. Therefore, pulling out [] g Jo from (3.14)

7a<g<

d
S=(1+40.(k/loglogd)) Y [ filmo,...,mu_1,d), k< cloglogd.
mo=1¢<gq—1 (317)

Next, write
d = a3-5-...-q-1)+0
= aQ+p,

where, by (3.10), o, € Z,a > G,, 0 <3< 3-5-..." a1, and break up the sum over
mo
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The second sum on the r.h.s. contributes O(3 loglog d), which can be seen from Hq<qa_1 fq <
Il,<,. ,1/(1=1/q). But 3 <d/q, = O(d/log d), so the contribution to (3.17) from this
sum is O(dloglog d/log d). To complete our proof we show

aQ
S I falmos- - smuss,d) = aQ = d(1 4+ O(1/log d)). (3.18)

mo=1 ¢<qq—1

This in combination with all our other estimates will establish the theorem.

To prove (3.18), break up the range of summation mg = 1,... , a@ into blocks of length
@ (there are a such blocks). Each block contributes the same amount to (3.18) because
HQSQa—l fo(mo, ... ,mp_1,d) depends only on the values modulo @ of its arguements.
Next, we show by induction on a that

<Ga—1

Z IT fi(mo,... mic,d) = Q. (3.19)

mo=1 ¢<qgq—1

If a—1 =1, then our sum is

Z fq1(m07--- 7mk—17d) (320)

m0:1

Using the notation of (3.15), we find that (3.20) sums to

I o d—(w,tVfg
Un T g T T ) T T ) -

Now say that (3.19) has been proven for @ — 1 and consider the a case

Z H fq(mo, cee 7mk_1,d).

mo=1 ¢<qa

Group the mgy’s according to their values modulo ¢,

qa 91°--Ga—1—1

Z Z qu(nQa+n07m1,--- yMp—1,d).

no=1 qs‘]a

Now, because f,, only depends on its values modulo ¢,, the above is

9a <@a—1—1
qua(no,ml,... ,mk_l,d) Z H fo(nqe + no,ma, ... ymy_1,d).
no=1 9<ga—1
But as n runs from 0 to g1 - ... - ¢,—1 — 1, ng, + ng runs over the complete set of residues

modulo ¢ - ... g,—1 (because g, is relatively prime to ¢; - ... - g,—1). Hence the inner
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sum is, by our induction hypothesis, equal to ¢; - ... g,_1, so the above is

9a
g1 ... Qg1 Z fqa(no,ml,... ,mk_l,d) =41 ... Ga-149s = Q

n0:1

O

Remarks . In [5], Gallagher studied the combinatorics of a related problem, essentially
that of the asymptotics of the sum >, ., Aqx. His method can be adapted for our
problem (with messier combinatorics). The remainder term obtained grows very quickly
with k (though for small k&, his method provides a stronger result). On the other hand,
Theorem 1 can be used, along with Corollary 1 below and summation by parts, to
obtain the asymptotics of > .1, Adr (though, they are not needed for the Champions
problem). -

To establish Corollary 1 we first give a general counting formula which is useful for

averaging certain types of products.

Theorem 2. Let S := {a} be a set of pairwise relalively prime positive integers, and
let f be a complex valued function on this set. Then

ST =m 1 (1+ 0w -v) -3 {f v@-y

d=1 ald a<M o aEo
a€sS a€S

where o ranges over all finite non-empty subsets of S whose elements are all < M, and

where {x} = x — |z| denotes the fractional part of x. Empty products are taken to be 1.

This formula can be derived using an inclusion-exclusion argument as in the sieve of
Eratosthenes.

In particular

Corollary 1.

= B q(q—2) " M 1
;AdJ_QMH(q—l)Z_ALI Z Z {Ch- }(%—2)---(%’—2)'

g>M =1 ¢1<.<q¢;<M

This implies
M
Y Agy =2M + Olog M).

d=1

The first part of the corollary follows from Theorem 2, (2.7), and (2.3).
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The second part follows by noting that

I ¢ M9=2) _ 14 ou1),
q—l

>M

and

D> it ooy < I

=1 ¢1<..<q;<M

! 9) = O(log M).

The above Corollary was also proven in [1, page 10] but with O(log®(M)) instead of
O(log M) for the remainder, and, with the correct remainder, in [12, Lemma 17.4].

4. TABLES AND (GRAPHS
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x | Champions for = x Champions for
5 12 421 26
7 2 431 26
11 2 433 2

: : 439 26
97 2 443 26
101 24 449 6
103 2 457 6
107 24 461 6
109 2 463 26
113 24 467 246
127 24 479 246
131 4 487 246
137 4 491 4
139 24 f :
149 24 541 4
151 2 547 46
157 2 557 46
163 2 563 6
167 24 f :
173 24 937 6
179 246 941 46
181 2 947 6

f : 953 6
373 2 967 6
379 26 971 6
383 26 977 6
389 6 983 6
397 6 f :
401 6 1.7427 - 10% 7307
409 6 : :
419 6 104%5 72107

TABLE 1. Champions for small =
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d | N(10",d) | (2.6) with M =4| (2.8) | d | N10Zd) | (@26) withM=4] (28 |
1 [ 1870585221 [  1870559866. | 1734571973. || 26 [ 299020127 19357608. 287761502.
2 || 1870585458 |  1870559866. | 1608489045. || 27 || 511589763 |  -117485659. | 489342519.
3 || 3435528229 |  3435458600. | 2983176210. || 28 || 276101593 |  -190236598. 272337270.
4 || 1573331564 |  1573293311. | 1383199071. || 29 || 238482555 |  -159446366. 218306665.
5 || 2052293026 | 2052377278. | 1710267841. || 30 || 521616486 |  -872270696. 520705710.
6 || 2753597777 |  2753698149. | 2379035785. || 31 || 173395125 |  -542475987. 187370709.
7 || 1556469349 |  1556538305. | 1323739864. || 32 || 174696822 |  -466395227. 168010801.
8 || 1202533145 | 1202481778, | 1023002316. || 33 || 337881160 | -1472349367. | 346327794
9 || 2246576317 |  2246300116. | 1897433561. || 34 || 144475047 |  -901708546. 154203810.
10 || 1298682892 |  1297504207. | 1173113383. || 35 || 209257685 | -1446734637. | 214563934
11 || 1105634145 | 1104842257. 906625819. || 36 || 225244356 | -2345640221. | 248794573.
12 || 1754011594 |  1748689938. | 1513472556. || 37 || 112410088 | -1279821387. | 118692508.
13 || 866077378 860228350. 765617165, | 38 || 103953673 | -1562442677. | 113342851.
14 || 946685406 940272873. 781065469. | 39 || 202872036 | -3480363786. | 216657899.
15 || 1803413614 |  1768917778. | 1609765148. || 40 || 109107891 | -2536053455. | 122824166.
16 || 596278790 571983719. 559868265, || 41 || 79287666 | -2097549341. | 87646234
17 || 629634308 602935653. 553874113, | 42 || 169541709 | -5569989899. | 190259148.
18 || 1069300358 994461819. 963192792. || 43 || 63992940 | -2740157702. 75335519.
19 || 520188423 469051756. 472946539. || 44 || 67022921 | -3106662564. 75804586.
20 || 626694626 549365467 552378496. || 45 || 141957467 | -8653244845. | 168777258.
21 || 979052296 757589403 922195739. || 46 || 49878328 | -3851360864. | 61511925.
22 || 414087760 277381704 395992947, || 47 || 46375798 | -3982359526. 55682088.
23 || 366906343 217998577. 346302520. || 48 || 83989444 | -8412724248. | 101068993.
24 || 651790197 305395231. 613209321, || 49 || 45681754 | -5553974513. 56258792.
25 || 386726111 71637118, 379182356. || 50 || 48416676 | -6460114606. 57992596.

TABLE 2. A comparison of two different estimates for N(z,d). Here we
have chosen z = 10'2. The first estimate was computed using (2.6) with
M = 4. The second estimate was computed using (2.8). The table shows
that the higher terms in (2.6) are important for estimating N(z,d) if d is
allowed to grow (notice that the middle column gives a good approxima-
tion roughly up to d = 18). This is a fact that Brent observes in [2] . His
computations also show that taking all the terms in (2.6) gives numbers
that agree very well with N(z,d). This is what (2.8) attempts to do (in
closed form). However, d needs to be large for (2.8) to be a good approx-
imation and x has to be large compared to d (though, even for small d
and x not too huge, the table reveals that (2.8) gives a decent, uniform
approximation to N(z,d)).
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factor was included for graphing purposes.
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we see that,

?

Integrating (2.8) by parts, and taking logarithms
for fixed z, log N(z,d) should follow a straight line (with respect to d)

scale.

linearity and

(

Notice, at 2d

Both these traits
prominent pertubation which reflects the relatively large size of Ajgs ;.

with small pertubations of size log Ay ;.

210, a

pertubations) can be seen in the above figure.
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FIGURE 3. A figure substantiating the remark made following (3.1). Here
we have drawn the graph of d vs (% + LA(“““) 4 for k =1,2,3 (there

2d Ad,k logd’
are 3 graphs superimposed in the above figure). According to the remark,
these graphs should all be bounded. This picture not only shows them to
be bounded, but suggests that they fluctuate about some constant value.

For fixed d, as k varies, the fluctuations seem to be proportional to 1/k.
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