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1. Introduction

In this paper will be given a new proof of the prime-number theorem, which is
elementary in the sense that it uses practically no analysis, except the simplest
properties of the logarithm.

We shall prove the prime-number theorem in the form
(1.1) im 2@ = 1

z—w X
where for £ > 0, ¢(z) is defined as usual by
(1.2) 3(z) = 2 log p,

p=z
p denoting the primes.
The basic new thing in the proof is a certain assymptotic formula (2.8),
which may be written :

(1.3) 3z) logz + D logpd (%) = 2z log z + O(z).
Pz

From this formula there are several ways to deduce the prime-number theorem.
The way I present §§2—4 of this paper, is chosen because it seems at the present
to be the most direct and most elementary way.! But for completeness it has
to be mentioned that this was not my first proof. The original proof was in
fact rather different, and made use of the following result by P. Erdés, that
for an arbitrary, positive fixed number 5, there exist a K(5) > 0 and an zo = zo(3)
such that for z > z,, there are more than

K@) z/log z

primes in the interval from z to z 4+ oz.
My first proof then ran as follows: Introducing the notations

i@ o w2 o 4,
x .
one can easily deduce from (1.3), using the well-known result

(1.4) > 195_’-’ = log z + O(1),

Pse

! Because it avoids the concept of lower and upper limit. It is in fact easy to modify
the proof in a few places so as to avoid the concept of limit at all, of course (1.1) would
then have to be stated differently.
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306 ATLE SELBERG

that
(1.5) at+ A =2
Next, taking a large z, with

3(z) = az + ofz),

one can deduce from (1.3) in the modified form
(1.6) (¢(x) — ax) logz + ’;’ log p <0 (g) - A :;3) = 0(z),
that, for a fixed positivé number 3§, one has
x z
wn 0QD>(A—M5,
except for an exceptional set of primes < z with
> lgi—p = o (log ).

Also one easily deduces that there exists an z’ in the range vz < z' <z, with
d(z') = Az’ + o(z').
Again from (1.6) with @ and A interchanged, and z’ instead of z, one deduces that
’ !
(1.8) 6@)<m+wﬁ
p 14

except for an exceptional set of primes < z’ with

>, ]ogz;)p = o (loz x).

From Erdos’ result it is then possible to show that one can chose primes p and p’,
not belonging to any of the exceptional sets, with

!
<<+,
p P ?
Then we get from (1.7) and (1.8) that
(4 — a)f<0(”ﬁ>§ 0("-,) <@+ <@+a+9Z,
14 4 4 14 P

so that ‘
A—-38<(a+ 8+ 9).
or making § tend to zero
A = oa.
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Hence since also 4 2 aanda + A = 2 we havea = A = 1, which proves our
theorem.

Erdés’ result was obtained without knowledge of my work, except that it is
based on my formula (2.8); and after I had the other parts of the above proof.
His proof contains ideas related to those in the above proof, at which related
ideas he had arrived independently.

The method can be applied also to more general problems. For instance
one can prove some theorems proved by analytical means by Beurling, but
the results are not quite as sharp as Beurlings.” Also one can prove the prime-
number theorem for arithmetic progressions, one has then to use in addition ideas
and results from my previous paper on Dirichlets theorem.’

Of known results we use frequently besides (1.4) also its consequence

(1.9) ¥z) = O(z).

Throughout the paper p, ¢ and r denote prime numbers. u(n) denotes
Moébius’ number-theoretic function, r(n) denotes the number of divisors of n.
The letter ¢ will be used to denote absolute constants, and K to denote abhsolute
positive constants. Some of the more trivial estimations are not carried out
but left to the reader.

2. Proof of the basic formulas

We write, when z is a positive number and d a positive integer,
@.1) N = Aix = u(d) log’ 2,

and if n is a positive integer,
(2.2) en = en.z = Zd/n xd .
Then we have

log’ z, forn = 1,
2.3) 6. = log p log 2°/p, forn = p*, @ 2 1,
) " 2log plog g, forn = p°f,az 1,821,
0, for all other n.

The first three of these statements follow readily from (2.2) and (2.1), the
fourth is easily proved by induction. Clearly it is enough to consider n square-

free, then if n = pip2 -+ P&,
on.z = on/pk.z - oﬂ/pk-zlpk .

From this the remaining part of (2.3) follows.

t A. BeUurLING: Analyse de la loi asymptotique de la distribution des nombres premiers
généralisés, Acta Math., vol. 68, pp. 255-291 (1937).
3 These Annals this issue, pp. 297-304.
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Now consider the expression

3 o, _zzx.,_z:xd[]= %f+o(42§:z|xal)

nsz n<zdln d<z
(2.4) "
=x2“( log (Zlog—x— E'i(i)logz£+0(z).
d<z d<z d dsz d d

This on the other hand is equal to, by (2.3),
2

> 0, =logz + > logplog%
Peszx

n<z

+2 Z log p log ¢ = Elog p

p%f sz
Pp<q
(2.5) + 2 logplogg + O(Z log p log %)
Py=z
+O(€\: log’z) + O ( Z logplogq)
p“>513 a>l
+ log’ z = ; log p + Y. log plog ¢ + O(x).
P==z PIs=z

The remainder term being obtained by use of (1.4) and (1.9). Hence from
(2.4) and (2.5),

(2.6) ; log?p+ D logplogg ==z Z"(d)l 2w—l—O(a:)
) %4

Pes=z

~ It remains now to estimate the sum on the right-hand-side. To this purpose
we need the formulas

2.7) ;% = logz + &, + 0(z"Y),
and
(2.7) > TE’—V) =1log’z+ calogz + ¢ + Oz %)

where the ¢’s are absolute constants, (2.7) is well known, and (2.7') may be
easily derived by partial summation from the well-known result

Dorlv) =zlogz+ ez + 0(V2)-

|
From (2.7) and (2.7") we get
log’ z = 221(1')_*_052 + ¢ 4 O(z7%).

»rsz ¥V ysz ¥V
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By taking here z = z/d, we get

Z#(d)l ___2}:#(d) > UQ Zu(d) > 1

dsz d<z d v<zld ¥V dSz vszld V
,Z:’ p(d) + 06 Z Y = dz; #(d)f(!')

TEPRD DGR Z“(d) + 0(1)

drsz

2= Z#(d)r( >+cs > - 2o ud)

1
nsz N n<x N din

i

+001) = 2 Z%+cs+0(l) = 2logz + O(1).

nsx
Weused here that D _a4/a u(d)7(n/d) = 1, and the well-known D <z (w(d))/d = 0(1).
Now (2.6) yields

(2.8) > logp + 2 logploggq = 2x logz + O(x).

psz PIse

This formula may also be written in the form given in the introduction

(2.9) d(z) log z + > logp?o (£> = 2z log r + O(z),
p=3z

by noticing that
> log* p = 8(z) log z + O(z).

psz

By partial summation we get from (2.8)

log plog g _ ( )
2.10 | —r el =2r+0
(2:10) Ex 8P+ yéz log pg + log =
This gives
lo
> logplogg = Z ogp 3 logg =2z 2 =ep
Pes<zT qszlyp ps=z
1 I lo
- > logp 2 _"_%_‘I"_gf z Y gp
ps= grszlp og qr p==z (1 + log )
P
log ¢ log T3

=2 logz — 2,

. TTog gr ( ) + O(x log log z).

Inserting this for the second term in (2.8) we get

log p log ¢ <x)
2.11 9(z) lo = = 22| — O(z log lo .
(2.11) (z) log z 2_;,: g e o)t (z log log z)

383



310 ATLE SELBERG

Writing now
d(z) = 2 + R(z) y (2.9) easily gives

(2.12) R(z) log z = —Z logp R ( ) + O(x),
and (2.11) yields in the same manner

log p log ¢ (x)
2.13 R(z) logz = ——R| = O(z log 1 ,
(2.13) () log 'E: log pg - + O(z log log z)
since

log p log q
vt = .- P | O(log 1
2:5‘.‘ oo log g 18 * Ollog log ),

which follows by partial summation from

rZ bg?;———%—q = } log’ z + O(log z),
4=z

which again follows easily from (1.4).
The (2.12) and (2.13) yield

2|R(z)|logx é’é logle(i)\

log p log q I ( ) '
R O(z log |
+ nz§;= " log pg Pq + Ol log log z).

From this, by partial summation,

2|R(x)|logz = Z{Z]ng+ logplog}
z

ngz lpsn psn log pg

{2 @)]-|=(

);} + O(x log log z),

or by (2.10) i
motves <2 ()] -e ()
+0(Zi‘+_nl’oEﬁR<f=> (n+1') + Ol log log 2)

=2

nsz

2(3)

1
+ 0 (IC Ez m) + O(x log log x) n;z

+ O(E ————1—0(2)> + O(z log log z)

nsx 1 + logn

1 Ele(3)

+o(Z 7l () - ((nil)})

+ O(x log log z),
nsz
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(;)

which is the result we will use in the following.*

or

1
(214) |R@) | = >

nET

10 (:c log log :z:>
logz /'’

3. Some properties of R(x)
From (1.4) we get by partial summation that
Z 0(n) log z + 0(1),
or

nsz

This means there exists an absolute positive constant K, , so that for all z > 4
and 2’ > z,

zSnsx’ n?

< K;.

Accordingly we have, if R(n) does not change its sign between z and z’, that
there is a y in the interval z £ y = 2/, so that
R(y)l< Kzl’ K = 1.

z
log ;

(3.2)

This is easily seen to hold true if R(n) changes the sign also.’
Thus for an arbitrary fixed positive § < 1 and = > 4, there will exist a y
in the interval z S y < ¢ **/* z, with

(3.3) | R(y) | < oy.
From (2.10) we see that fory < ¢/,

0 2 lgps2 —y)+0 ( '>

y<psv’ log y¥

from which follows that

R6) — E@) | 5y -y +0 ().

¢ Apparently we have here lost something in the order of the remainder-term compared
to (2.8). Actually we could instead of (2.14) have used the inequality

2 logn z z
|B@) | s 2 2 = R(a) +0(nogx):

nsx n
¢ Because there will then be a | B(y) | < log y.

which can be proved in a similar way.
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312 ATLE SELBERG
Hence, if y/2 < ¢y’ = 2y, y > 4,

|R(y") — R(y) | < |y —y|+0<logy>

or

|RG) | = | Ry | + |y’ -y)+0(logy)

Kq/d

Now consider an interval (z, e ), according to (3.3) there exists a y

in this interval with

| B(y) | < oy.
Thus for any y’ in the interval y/2 < ¢’ £ 2 y, we have
KI
’ < ' 3Y
|R(y) | = oy + |y y|+logx.

or

) ’
_Y |4 K
<26+'1 y +log:v°

Hence if > ¢ **/* and e"‘m) < y'/y < € we get

<2 4+ (" = 1)+ 5 < 44,

Thus for z > e ™/ the interval (z, ¢ *¥/ ’2) will always contain a sub-interval
(1, €”*y), such that | R(z) | < 46z if z belongs to this sub-interval.

4. Proof of the prime-number theorem

We are now going to prove the

THEOREM.
lim () =
PN
Obviously this is equivalent to
(4.1) lim I_B_(:c__) = 0.
s &
We know that for z > 1,
(4.2) | R(z) | < Ka.
Now assume that for some positive number a < 8,
(4.3) | R(z) | < oz,

holds for all z > z,. Taking § = «/8, we have according to the preceding
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section (since we may assume that zo > e**'%),

that all intervals of the type
(z, e™*/*

) with £ > z,, contain an interval (y, ¢*%y) such that
(4.4) | R(2) | < a2/2,

fory = 2z s é%.
The inequality (2.14) then gives, using (4.2),

15 ok, B[ (2) [+ ()

g T ngs=
z 1 z 1
<K Ly 2 !
IOg T (zlzg)<nss N lOg T ngzlzd N

22 ()l + o (i),

writing now p = €** we get further, using (4.3) and (4.4),

T 1 ar
Rz)| < = = e
| Bl) | log « "5%30) n 2 log T 15y 2 (log (a/20) I10g p)

1 x ar 1)
— O = x — [P — -
v.éﬂé;.e“/”/ n + (\/ log x) * 2log x 1§V§(loc§/:¢o)/loz 0 2

PPy, <pre=3/2)
s a5 z
+0 <Vlog;c) e 41()gpx +0 (\/l?)_g-:;:)
— 1 - o? 0 X i a ‘
— e\ T aseia) T T O\ Visgs) < #\! T s00,)

for x > z,. Since the iteration-process

- (1~ 5)
Qnil = Qg - 3—0'0—‘"1{2 ]
obviously converges to zero if we start for instance with a; = 4 (one sees easily
that then a, < Kj/+/n), this proves (4.1) and thus our theorem.

FINAL REMARK. As one sees we have actually never used the full force of
(2.8) in the proof, we could just as well have used it with the remainder term
o(z log z) instead of O(z). It is not necessary to use the full force of (1.4)
either, if we have here the remainder-term o(log z) but in addition knowing that
¢(x) > Kz for z > 1 and some positive constant K, we can still prove the
theorem. However, we have then to make some change in the arguments of §3.
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