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The Zeros of the Riemann Zeta-Function

By E. C. TitcHMARsH, F.R.S.
(Received May 14, 1935)

1—It is well known that the distribution of the zeros of the Riemann

zeta-function

_ (s=o+if)

() = M_
plays a fundamental part in _..ro EooQ of prime numbers. It was con-
jectured by Riemann that all the complex zeros of ¥ (s) lie on the line
c = %, but this Eﬁoﬁrmﬂm has never been proved or disproved. It is
therefore natural to enquire how far the gﬂoﬁro&m is supported by
numerical calculations.

The most extensive calculations of this kindt have been undertaken
by Gram, Backlund, and Hutchinson.} The final result obtained by
Hutchinson is that Z (s) has 138 zeros on o = % between ¢ =0 and
¢t = 300, and no other zeros between these values of ¢.

The method of all these authors seems to be substantiaily the same.

Hutchinson uses the formula |

n— 1-8
=" &+ 55+ 1

v=1 v — 8

1 B, sGs+1)..(s+2v—2)
I—I MH ﬁ.l _.v . ANCV _ =m+N<|H + wk

yE=

(R, satisfying certain inequalities), which, with suitable values of n and
k, can be used to obtain arbitrarily close approximations to T (s) in
the critical strip. The calculations which it demands are very laborious
if ¢ is at all large.

There is, however, another formula available. The well-known approxi-
mate functional equation of EE.% and Littlewood is

(=% 10 Z o+ 0 + 007 1
where 2nxy = |t|, and % (s) = =* " I' (3 — 3s)/T @,e If x =y, each is
equal to (Jt]|/2m), so that for large ¢ there are only O (4/7) terms to be
calculated. But the method has another advantage. It has recently
been found that certain cases of the formula were known to Riemann,

t See my Cambridge Tract “ The Zeta-Function of Riemann,” § 3.13.
t Hutchinson, ‘Trans. Amer. Math. Soc.,” vol. 27, p. 49 (1925).
§ Siegel, ¢ Quell. Gesch. Math.,” vol. 2, p. 45 (1931).
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and that he obtained an asymptotic series instead of the above O-terms.
The series proceeds in powers of %, and the coefficients are trigono-
metrical functions, and so are suitable for calculation. Since the series
is asymptotic and (presumably) not convergent, the degree of approxi-
mation obtainable for a particular ¢ depends on the constants involved.
I find that by taking the first term of the asymptotic series (of order ¢
on ¢ = }) explicitly, and finding an upper bound for the remainder,
we obtain a sufficiently close approximation for the purpose of show-
ing that the zeros lie on ¢ = 4, as far as the calculations go. I have
now carried them as far as 1 = 390, and find that all the zeros up to this
point lie on ¢ = 1.

1.1—The paper is in three parts. In the first, the approximate formulae
for { (s) are proved. There is no new principle here; but approximations
which are familiar in the ordinary O-form have to be obtained with
actual constants. In the second part the results of the calculations are
described. I then conclude with some mE,EB. theoretical considerations
on the problem of the zeros.

The following notations are used in §§2-9. We write as usual
s = ¢ + it, and always take # > 0. We put ]

t=2m7, m=[ys, = n=4Qn)=2nyx

The various contours used are denoted by T, T, ..., and the integrals
by J, Ji, ..., Ky, ...y Ly, .... The complex variable of integration is
w=u-+iv, and A= [w—in|. The function r (w) is defined in § 4,
and ¢ = ¢ (o, #) is used temporarily in this section.

We write

x@) =m0 G —3)/TFs), xG+it)=e™,
$=—Itlogrn+Ilog '} + dir);
k= 3/(2n).

so that

also

By @y, w,, ..., we denote remainder terms in asymptotic formulae for
the I'-function.
We write f(?) =f(@2n) = * L (% + it),

f (=) being real for real =; also

WA.& — A 53 :UOmN.aﬁd —_— ANS.T : )\a .I mi
G cos 21t/ T

k() =S98 2n (82 — £ — #V

cos 2nk
so that, if v/ =m + £, then g (1) = (—1)""1 2=th (E).

Yy
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Also
a, = «, (1) = v cos 2x (x — Tlog v).

2-—We begin with some lemmas, which are familiar enough, but which
-ontain a useful statement of inequalities which we shall use.

LEeMMA o—
c

—c=c? < .
T T & (=< )

Arc tan

For if
c

1—c¢

F (¢) = arc tan —c— ¢

‘hen

oo 2¢ (1 — 20)
m.AhVIIHIIMﬁ.l_INh.wWO AOMQMW.Vu

ind since F (0) = 0, it follows that F(¢) = 0for0 = ¢ = 1

LEMMA B—
c c?
—_— <C= :
c E.omEH+nWH+9 0 =c =y
For arc tan x < x (0 < x < 1), so that
¢ C c* c?
- —_ — = .
¢ m~o$ﬂ~+an 1+c¢ 14+c¢c 1+4¢
LEMMA v—

TG —if)| < @upett  (t>0).

For
[T (3 — i) |2 = = sech nt < 2me™.

LeMMmA 8—Forae >0, t >0,
Momﬁﬁq._uﬁ.oﬂﬁql_.:_Iw:omﬁq+5

o —it+ }log2m +

12 (s + it)

l_l w,

where
1

lo1] < 3002

We have
log T' (5 + if) = (o + it — 4) log (o + if)
Iqi:+tom~a+ﬁ

o &: uf(a+tt) h&c
c%al_r 1+ o2

Lk o on
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We write
et dy  u _:.:qi.c ¢
.'.“ 1+ o+it Jo 1+

and note that
".s udu 1 co 18 du 1
Jo

ez —1 240

0 Nws.: - ﬁ Nh.u

This gives the term {12 (¢ + if)}*; and
us 1

o 2 b < max
v i i
h 1 4 o2 Iu_ql_n&_uomwm::ITy»Ao..Tm.Ol»_
o 1 w? P
- w_q+m.n_Bmx_qw|~m+ A + 2iot| .Mw_o..T&_Nqn = o2’

and the inequality satisfied by «, follows.

LEMMA e—For 3 =0 <2, t =10,
IT (6 + if)| < 1-04 2m)t £~ e,

By Lemma 3
log |T (6 + if)| = — bt + (s — D log? + (e — Hlog (1 + %)
| +Nm38smlq+w_om~a+ee
where
P S
2L =121]c +it] = 720st?

Since log (1 + o?/t?) < 6?/%, tarc tan(o/t) < o, We obtain

log [T'(c +it)| < — int + (6 — 3 logt + $log2n 4 a,,

where
(c —1)® 1 o, 1 3 1
|os] = 21 T EEYIN .Bo&NA £ 1 T gor
< 0-039 < log 1-04.
LEMMA (—For 0 << o £2, t = 4, N
log I’ Aof_u,,..mﬂv = (¢ + it — ) logit — it + % log 2=
" 6t — 6 1
Y T oesm T O
where
?lo—3| , o, I
lod <—7— T 7 + 700"
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We have
. s b , c __ .M.M
(c+it—Plog(c+it)=(+it— 1) A?om it + 7 3 Q&L + .,
where

in the given region. The result now easily follows from Lemma 8.
Immediate consequences are:

@) logT (& — it) = — itlog (— if) + it + % log 2 + Nlmm +
where
61 7 .
_ea w% nw _ A A..Olmnu
(i) :om2»+§uw:om%i%l?+m_w.n+ o,
where
167 1 2
lor] <7300 *+ 335 < 13-
3—By a well-known series of transformations
. m I~| _ H o0 x\aIH e—mw
m@vl_‘mai —.J@v_.o e¥ — 1 e
_ 21l TA—-9)[ (—wplem
_.mw .ﬂ 2 .—.O ev — 1 w
m m — —_— 8—1 H—muw
-sliye% ﬂ_| U ...@‘q (= wy— e 4
vl VY pas] ¥ . 2mi c’ eV — 1

where C is a loop coming from infinity on the positive real axis, encircling
the origin in the positive direction, but excluding the poles of the inte-
grand, and returning to infinity; and C’ is a similar contour including the
first m poles of the integrand on each side of the real axis ; and

A.l S\Qulu — ?ld@om fw|-+i am Alsz.

where am (— w) increases from — = to = round the loop. The final
formula holds for all values of s except s = 1.

We next deform the contour C’ as follows. Take the contour from
infinity along the straight line v = u + v as far as u = — %, then along
u= —3inasfarasv= — (2m + 1) n;and thenalongov = — 2m + D=
back to infinity. Since this might pass through a pole, we have to make a
further deformation. The part of the contour outside the half-strin
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v >0, |u| <3risleftasitis. We cross the half-strip along whichever
of the lines v = 27 (/= + 3) is further from any of the lines v = 2rr,
where r is an integer, and join up along u = — 3w oru = 3m as the case
may be. . .

To make the argument definite, suppose that 4/t + % is @92 ?wB
an integer than 4/t — . The contour, T' say, then oow.mwwa &. nine
parts, I'; to Iy, which are the straight lines joining the following points :—

o0 et'r, in 4 nt~d et in -+ 27imet™, in + %ir,
in + 27imett, in — 27 et in — ntiett,
in — 2 inettm, — 3n — (2m + 1) ix, + o0.
Let
Y 9 9
H:&H". (—wr mss&chm% = X
r e’ —1 C k=1drp k=1
and put
/ - L e—mY
s J = _. (= W)=t — (— =" elomin Jrabito=intin} = —— dw
s T Pyt +Tg e

" mﬁslmi Jr+ o)t m—mw

T m All msv.... . e¥ — 1 dw al.ma_ B ._.-:...

B RTERE, BT 8

8
= X Hﬂa+r|ﬁm|ﬁu“

k=2
the integrands in L,, L,, and L, being the same, and I, being I'; continued
to infinity. Thus

J =0+ Ko+ Ky + Ko+ Ky + Ko+ T+ T+ T+ Li— Ly — L. (3.1)

The main term is L;. Let L be a straight line ?ﬁm:o_.s U=, inter-
secting the imaginary axis between 0 and 2. Then, as in Siegel’s paper
referred to above,

m=s+§.?%ﬂmaoo¢a @awlnlwvmmimars.
L e — 1 cos 7@

Hence, putting a = 2 (/1 — m),

Qﬁ8+m§!..|$_v Jr+ii(w+2mri—in)fr—mw

Ly="- (it | prp W
. =g cos2n{t— (2m + 1) /7 — £}
— (= Dot (= it emites 2 S8 2R AT
= e-dint—d (Qm)istt phe—i et g (7). (3.2)
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4—We next observe that

— -1 i }e—1 ols— ;
(— wy—1= (— in)1els :_ou?:s;.

and
oql_+5_omlf.ﬁq|_+=ip

EI
in

=(W—in)/7 +

We therefore write

? — in)? +

in __ WA msvu

AII. S\.v.wlu. e AI... n.dv?lu. Nﬁz\.lmi 743 (0—in)¥/x AH + r c\—\vy

where . .
r(w) = exp Tn ? AE Maasvul. v
I e A Y
Ky = _‘ i - i)t e\w—in) .M.kusnﬂi.?uss r (W) dw.
For |z| < W | )
le—1=lz+ 5 + ﬁ _M.._+_N_u+_.N_NL?..H._I_MN
Hence, putting _Elms_ =
b (W —in® _ w—in
RCIE M_Jﬁ\hf.v; [l m
=414 (2 L “lw:lq_ sw_sl.:
R VI e P

On Iy, (A/9)® < 1/¢, so that we also have
Irw)] < 3O+ |1 — o

A (ET e =

\lso

{0 — i) vr 4 L i — (1) w

vrw
.IN.“«‘

1— iw @i_é_&\?lw 1—( vle+w:lqc|.
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and |1 —e*| =1 — ei*. Hence

el R (1 V) i s B Slicd RV L YR
K et
Kl = T @rt)i(l — e »J.—i,\m s — (1411 Io._:l P
eti—ir wn»+.m...a+wn__ — o (4.1)

T CyE(l—em i —(1+3]1—eprt

The same inequality holds for K.
Next consider K;. Here A < /4/2, so that

V.2 R R
ROIE tw\w\b ARdbry
TR ST cY

Denote the denominator on the right-hand side by ¢ = ¢ (s, ?).
Also w=u+i(n &+ 3n),

R{w—inyvrt+3HW—inPim'— (m+ 1)w}-
=uy/TFIu—m+ Du < v,

(allowing for the two possible figures) ; and -

|l —e™|P=1—2e*cosv + e > 1,

since here cosv < 0. Hence

eirt Aw |l — g

1
IK,| < e b et dy. 4.2)

24 Y

The same result holds for K.
Next consider K,. We have the same inequality for r (w) as in the

previous case. Also w = — wn + E so that

R{(w—in)v/v+HW—in?in — mw}
lena\a+*@|€+w§n < dx;

and
H...— _ — u _ H —_— leu. 1“,,
cnce
eirt wel®™ /xt 1% ] _ 1 — a._ 1
_Wm_ = Qrt)i=ic] — e i~ ﬁmh T 2 v ¢ )\n. (%.3)

Next ooumaom L,. Arguing as for K,, we have

_H,l _ Nmﬂw 8 I.m..’m?.
%l = «Nﬂ% 4o ‘—..1 1 —exp(— él)\wv



242 E. C. Titchmarsh

Now - .
® AV A = —}tk
. .-a-*mlzac,l_.i A:v afAA vm:.
en
drt e omi
e g (%) (4.4)

The same result holds for L.
Next consider J;, and suppose first that ¢ < 1. Here w = in + Aettm,

(— wy~t = exp [(c — 1 + if) {log (n + Ae~+") — }im}],
and

log (n + Ae~tm) = 4 log (W + 4/2m2 + »*) — jarctan
Hence

_Alu Ev. H_ - Ad o sw )\N 4 wuquiw mwaiwasi:: J2+A)}
< sqlu elnt+tarctan {rl(n .\f;:

A
nv2+X

Let J,’ be the part of J, with A < n/4/2, J,” the remainder. In J,’, by
Lemma B,

Ao A
A§+c)|\.w ;HoSuda\~+wl Aglm_.oﬁms )\~+wv
2% _ N
! Nd 1+3 5
ence
int »
5 e ‘m e~ Wi g,
_ 1 _ Aquﬂvw io AH _ Nla*owv

This integral is

(o0 —_ 5= qu 8- quqw
et du < 2T eintlim — T ot
c_.rldnl* Nva B= Ndﬂlw ¢ N AN.HMVW
Hence .
Swttet -t .
3y 4.5
_ . _ 2 2ni)t- o 1 - NIL;J ( v
In J,”, 7 4+ nM/2 4+ 2 = §7%; hence
" Ant » A A
[, | = 5 .Q exp TAE.O tan — v d.
H».u @svawq 11— mla*:v e /2 + A .«:\NV
A A
= —— — arc tan "
R WY5) n4/2+ A

s gty £ s e

PR
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then
&t. 1 m .<N

I w2 (P F a2 R

which is positive and steadily increasing, Hence the above integral is

.m_: e—nt &4 dr du < ﬁ&wv _. e+t dyu = Amlwvo ml:.“,

dp dp/o dp/e t
where
wo=%—arctant =z —1=4,
and
@v 3
A&V 0 o Md )\N.
Hence s
_..—.H:._ Md)\Nm T—.@

3t (g (1 — e
InJ,, w=in— Xet’r, and

[(— wy—tem| = (i — qr /2 + W)

<o i+ s+ 3

M@é?-;i {4 + arctan 5 ) IM 2Ty N\Nm

< ()it gt r— )
Hence

Nw.___,n H 8 I.w»-.ﬁ
_ Hq _ = Tt m a. Rw(
Gy T — e L

which is the same as for L,, but with an additional factor 2i~#>. Hence

wi It* Nq_..
J £ (= 4.
3.1 = A...nbwlwq 1 — e\ g V *7

Next consider J,, Here w = — 47 + iv, and

_A...I :\v«IH_ - A.mndm 4 vawaw etarctan (2v/n)_

Hence

m %
_..—w_ M et ‘“ n A*dm + Gwqulw N;qoem.a (2o/n) dp.

1 —e ) _emipn -

Let

o T m_.oSzmm| , s _ 4

7 dv P+ 0
Then the integral is

2 @+ ot e de < 2 o+ m o+ e S

7

Nm.:.n
t
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We have mvn < ¢; and, if ¢ = 2=, C
2 1<+

Mo m-+1=+Qtr)+1 < 34/(t27).

2 2 o+ o |
1Js] = 244 + Qo+ 1P nipies etti+im < 2 Bt e'dHm - (4.8)
w1 — e o (L — )

Finally, on T,
|(— wy=t|=|w|" exp [— dnt — ¢ arc tan {u/(2m + 1) =}].

Hence, if 6 < 1,

_H _ = g -%8 ex - ta u _ du
o @ DA {—rarctan oot — a2
.ﬂs < b» e—mtlu gy, — 1
and ¢ R m+1’°
0 = in
Now .—n b .m =P AGS + D= & 3\:@&: .
! 2(m + 1)*x
Hence GmtDr~@mrDr <"T2
° K (m+1hy ot
@m+2)u A € e
Hence ._.erh_m :ANE.TNINSI_.N (t 2 2n).
J e—irt 1+ Wm.ﬁv St
| o] = ~{Cm + :.ﬁulqﬁs 1) <.

Cmr D m+n *

5—Slight modifications are needed if 1 < 6 <2. In J;,
T+ VL4 R < i
and the right-hand side of (4.5) must be multiplied by (§)°~!. In I
T+ qh4/2 + 32 < 522

and
© ent po- i 1) "
[emormdu=t ()7 1 em o s g
<€ (AT Lo=1 (d\) [ g \E et
t A)\v t .A& voma\mv i
"

M

Aa\lﬂlpc + _?LA 2 J.Jls..vl > 1.
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Hence the Em&?&m:& side of (4.6) must be multiplied by 2.
InJ, 72— nAy/2+ 2 < 9 if A < n4/2. The part for which this
holds gives the same upper bound as before, multiplied by 2¢°~% In the

remainder,
Adm _— dy.).\N IT v(mqulw < y Gt s < vf

and we get an additional term

Imeldn—1t
'ﬂ*ﬁ* *

mws& ] "
— % e dh =
1] — e ™% Jon2 1—e

InJ, |w| < max [{3n2 + @m + 122}, 4/22m + 1) 7] <3 4/(m1) if
In <u < (@m+ 1) =, and (2m + 1) = in (4.9) has to be replaced by this.
If u > (2m + 1) x, then |w| < 4/2u, and we get an additional term

A)\N:VQ|H NI:S.TC “ &: A N.|w=.n %’8 )\Nuﬁ&l:—.—.fuv t &2 — N|w.___.« DH_N ]
0

e | (m + 1P

Zm+1)nw

Collecting together the above results, we oE&.,u

Theorem 1—For 3} <o <1, t=8,

-

¢ @v = mH AW. -+ Mm.@.v r @.M“. s) e—iri et —iit Awavw.i fit—ig Aav -+ W@v,
where

|IT (1 —s)| e et i+ tn44xn|1l — o]
Ro s G S oy o —em s = G T —eDe

Awﬁvw—lwqe Aaw + w1 — Q_VA et — 4 + X¢ qw..m.wwlwde

n _H.Cl.a_ mm_a ﬁm&? Am+~w3..wm
2r 1 — exp (— nir}) fi-ie

Mq.nnw —th _.o..ﬂw —it NAMq.nnvwoi.m wnﬁli
*3 (2=t B T (Smeyi—ic i) t @t © y

IT (1 — s5)|ein?
2n{Cm+ Dwp-c(m-+ 1)’

+

The result is also true for 1 < o < 2 if the second curly bracket is multiplied
by § and the last term is replaced by

T — .a: 2metir—D ¢ 371 (@ g P
o T—epC @ m+l ¢ TmF’
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6—We now take ¢ = %, multiply by €*, and express everything in terms
of =. The left-hand side becomes f (7). The first term on the right-hand
side gives
m cos (& —tlogv) ™ cos 2x (« — 7 10 gv)
2 = T = 2 = . " ;

p=xl ve=1l

In the next term,
TG —if)=n#{T G+ 3)/TEG— 3R TG —it)

L +8m+~.8qv,

— ndt (2 e-imt+iit—tiv (27)~bit exp , -

by the corollaries to Lemma §. Hence this term gives
g(7) oxbﬁ.l quw + g 4+ meqv .

In the inequality for R (s) we use Lemma v, replace all constants by their
numerical values, and observe that for = = 8, ie, t = 167,

exp (wirt) = exp (2m) > 30.
We obtain

Theorem 2—For © = 8

f(r)=2 WQOmNﬁ?l4_OM<V+NA¢QGA| 7i +8a+~.eqv+~ﬂ,

| <w . Waq«.d
(6.1)
where 060
0-4652 0-4168 1 0:-96 PR
IRI< (=835 T T=049 ) at e 10
sl 0-38 1003274 + 0-309 10-045r 0-655 10~2% + 0-065 103, (6.2)
77 7t 7t .
and
7 1

|00 < fgpmar 9] < spm-

In the applications the factor multiplying g () can be replaced ,cw
unity, with negligible error. The last three terms on the right-hand side

of (6.2) are also quite negligible.

7—Let t, be the point where « = 4n — 1. Then the first term on the
right-hand side of (6.1) is

2(— 1) % v cos (2n~, log v),

v=1

£
i

The Zeros of the Riemann Zeta-Function 247

and the sum begins with 1, and shows a general tendency to be positive.
This suggests that f(=z,) and f(<,,) will generally have opposite signs,
and so that the interval (=,, 7,.,) Will contain a zero of ¢ (} + 2mwix).
This phenomenon is referred to by Hutchinson as Gram’s law. It is
known that the law is not universally valid, but it is true as far as the
calculations go, with very few exceptions, and the verification of the
Riemann hypothesis consists in the main of a verification of Gram’s
law.

The object of the calculations is to determine the sign of () at con-
venient points near to the points v,. For this purpose a table was con-
structed as follows. By Lemma §

_ — 1 @,

k=%(rlogt— = @+.@Iﬂ.mld+w|du (7.1)
where | »,|<C 1/(30n27?). The last two terms may be neglected in the
calculations. Values of t are found which give x approximately the
values —3%, 0, 3, 1, .... The first few values, * = 16, 2-84, 3-68,. ...,
were found by trial, and then it soon becomes possible to write down
sufficiently accurate values in succession by noticing the behaviour of
the differences; = has exactly the value given in the first column, and «
(which will not be exactly half an integer) is calculated to four decimal
places. The result is given in the second column.

The values of «, = «, (t) = v*¥cos 2rn (x — 7 log v), to three decimal
places, are given in succeeding columns. To calculate the cosines, a
table of cos 2mx was made giving four decimal places at intervals of
0-0001. This was made by finding the values to five decimal places at
intervals of 0-001 from a standard table in degrees, etc., and then inserting
the other values by linear interpolation, using a machine. This seems to be
sufficiently accurate for the purpose in hand. The «, can be calculated
quite quickly by using this table and a machine.

To calculate g(s), let /v=m+ & where 0 << 1, and let
g(t)=(—Dm1txth () (see 1.1). Clearly h(§)=h(1—5%). A
short table of 2 (E) for 0 < £ < 1 was made, showing that & (§) decreases
steadily from 0-:924 to 0-383. In calculating g (v) I also used Milne-
Thomson’s ¢ Standard Table of Square Roots.” .

The main table was carried from = 1:6, where-x = — 0:4865, to
T = 62785, where « = 98-5010; butitis only for = > 8 that the above
analysis applies. Sufficiently small error terms could, no doubt, be
obtained by this method for some of the values of = less than 8, but it is
not clear how to do this in all cases, and for some of the early values we
should have to use another method.



8-25
8-71
9-16
9-62
10-05

16-28
16:63
16-98
17-34
17-69
17-73
18-04

26-74
27-00
27-04
27-34

29-14
29-44
29-73

32-06
32-35
32-64
32-92

44-69
44-95
45-00
45-22
45-48
45-74
46-00
46-26
46-52
46-78
47-00
47-04
4730

62-06
62-30
62-35
62-545
62-785

K

4-5172
5-0088
5-5015
6-0166
6- 5081

14-5076
14-9977
15-4915
16-0032
16-5043
16-5617
17-0088

30-5035
30-9313
30-9972
31-4927

34-4992

35-0058

35-4969

39-4933
39-9967
40-5015
40-9901

62-4979
62-9923
6340873
63-5064
64-0023
644989
64-9963
65-4943
659932
66-4927
66-9163
669930
674940

970025
97-4981
97-6014
98 - 0045
985010

5 1

—0-994
0-998
—1:000
0-995
—0-999

—0-999
1-000
—0-999
1-000
—1:000
—0-926
0-998

—1-000
0-908
1-000

—0-999

—1-000
0-999
—1-000

—0-999
1-000
—1-000
0-998

—1-000
0-999
0-853

—0-999
1-000

—1-000
1-000

—0-999
0-999

—0-999
0-865
0-999

—0-999

1-000

—0-804
1-000

—1-000

0-213
0-696
0-407
—0-410
—0-683

0-119
—0-695
—0-124

0-703

0-033
—0-098
—0-707

0-693
0-149
—0-020
—0-682

—0-222
—0-573

0-544

—0-093
—0-633
0-507
0-334

0-361
0-561
0-370
—0-700
0-194
0-541
—0-638
—0-009
0-645
—0-373
—0-537
—0-184

0-704

—0-281

—0-527
—0-410
0-703

—0-534
—0-547
—0-565

—0-415
—0-080
0:300
0-553
0-523
0-500
0-213

0-404
—0-068
—0-144
—0-556

~0-575
—0-301
0-295

—0-:079
—0-556
—0-360

0-258

—0-469
—0-446
—0-340
0-269
0-562
0-006
—0-559
—0-270
0-435
0-468
—0-113
—0-227
—0-567

0-254
0-544
0-461

—0-150
—0-571

oty

0-463
0-469
0-478
0-488
0-496
0-497
0-500

—0-458
—0-500
—0-499
—0-420

0-400
0-174
—0-101

0-477
0-294
—0-009

—0-302

—0-481
—0-217
—0-142
0-208
0-479
0-422
0-073
—0-329
—0-500
—0-314
0-033
0-099
0-442

0-491
0-338
0-252

—0-151

—0-486

—0-438
—0-442
—0-443
—0-446

—0-361
—0-318
—0-267

0-353
0-406
0-439
0-447

—0-402
—0-267
—0:234

. —0-063

0-152
0-332
0-435
0-432
0-322
0-130

—0-064

—0-098

—0-301

0-324
0-056

—0-008

—0:245
—0-427

Gy

—0-363
—0-390
—0-394
—0-406
—0-407
—0-393
—-0-363
—0-319
—0-259
—0-187
—0-117
—0-105
—0-016

0-140
0-282
0-306
0-378
0-408

2 X e,
v=1
—1:562
3-388
—2-254
0:076
—4-494

—1-664
1-388
—0-690
5-488
0-104
—0-054
2-008

—1:598

0-094
—0-212
—6-206

—3-516
—0-038
—1-058

—0-682
1-022
—0-846
3:470

~6-832
0-080
0-608
—1-242
2:172
—0-878
2-254
~4-246
1-976
—0-514
0-462
0-262
—3-250

0-025
—0-042
—0-047
—0-111
—0-176

g (v)

—0-390
—0-473
0-495
0-402
0-335

—0-420
—0-373
—0-332
—0-296
—0-268
—0-265
—0-244

0-262
0-247
0-244
0-229

0:-173
0-168
0-166

0-181
0-188
0-195
0-204

—0-172
—0-177
—0-180
—0-184
—0-190
—0-197
—0-205
—0-214
—0-224
—0-234
—0-243
—0-244
—0-256

0-240
0-249
0-251
0-258
0-269

Total

—1-952
2-915
—1-759
0-478
—4-159

—2-084
1-015
—1-022
5-192
—0-164
—0-319
1-764

—1-336
0-341
0-032

—5:971

—3-343
0-130
—0-892

—0-501
1-210
—0-651
3-674

—7-004
—0-097
0-428
—1-426
1-982
—1-075
2-049
—4-460
1-752
—0-748
0-219
0-018
—0-3506

6-116
0-043
—0-483
0-880
—2-829

8C
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8—I give a few specimens of the table.

The upper bound for the remainder is not tabulated, since it is
steadily decreasing, and to determine the sign of f(7) it is only neces-
sary to calculate it for occasional values of .

The values © = 8+25 to 10-05 are the first five to which Theorem 2
applies. The total 0-478 for == 9:62 is a good deal the smallest in
absolute value in this part of the table. 1find 0-33 as an upper bound for
the remainder at this point, so that f(<) is certainly positive.

The first doubtful point is = 17-69. Here the value obtained for
T a, has the “ wrong ” sign. The value obtained for-the total is negative,
but is smaller in absolute value than the upper bound for the remainder,
viz., 0-182. The sign of f () is therefore not determined. An additional
point 17-73 is therefore considered, and here f(7) is certainly negative.
Hence there are two zeros between = 17-34 and = = 18 -04.

A similar state of affairs is found at == 27-04, and at 29-44 the
remainder is less than 0-113.

The point = = 32-06 corresponds to the first entry in the table on p. 60
of Hutchinson’s paper. The value of C(v.) given by Hutchinson
corresponds to (—1)* times the total ”* obtained here, where k is the
nearest integer to 2. In every case there is a reasonably good agreement
between the results.

At 1 = 4459, (%) actually has the *“ wrong ” sign, the remainder here
being less than 0-08. At 7= 45-00, however, f(7) is positive, so that

the expected number of zeros is found. This is the first point noticed by

Hutchinson at which ¢ Gram’s law  fails.

The next point which he notices is == 47-04; but here the present
method fails to determine the sign of f (). However, f (47 -00) is positive,
so that the expected zeros are found. *

The remainder of the table is chiefly remarkable for its regularity.
The only other point where f (<) may possibly have the wrong sign is
¢ = 62-3; and f(62-35) is negative, so that the zeros are found as usual.

Most of the calculations have not been verified, but the agreement with
Hutchinson seems to suggest that they are fairly accurate. Actually the
behaviour of «, (7), for a fixed v, as 7 increases, makes it easy to detect

" a gross error. The term a, first appears when = = +2 and here, by (7.1),

cos 27 (k — tlog v) = cos = { 7 log (x/v¥)—t—3%+ ...}
=cosT (V+3+..)=(=1ycosir+ ..,

d _ _ __1 _ 1
m?liomélw_oma ~om,‘ _ow.a»au.T.. Ewﬂ»au._.:..

and
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At its first appearance in the table, «, will therefore be approximately

(—1) v¥cos § w, and it may be expected to vary slowly for some time;
see, for example, the values of «, beginning at v = 16-28,

9—Our main ...“ﬁmcaoﬁ gives a lower bound for the number of zeros of
€ (s) on ¢ = 1 in certain intervals of values of . We next obtain an

upper bound for the whole number of zeros of {(s) for 0 <z <T
for certain values of T. —

It is known that, if N (T) denotes this number,
aN(T)= A{ams(s — D) =n ¥ T Fs) L)},

where A denotes the variation from 2 to 2 4 {T, and thence to 4 4 iT
along straight lines. Now u

Aams(s—1)==n. Aamr* = — 1 Tlogm,
Aam I' (3s5) = Ilog I' (} + 3iT) = 27k (T) + 4T log .
Putting am § (3 + if) = S (¢), we therefore have |
N =2«(T)+ 1+ S(T)/x.
am £ (s) = arc tan {IZ(s)/R% (5)}.

We know that R € (s) does not vanish along ¢ = 2. If T is such that
R % (s) @oom not vanishfor ¥ <o <2, ¢ =T, it follows that|S (7}| < =.
Hence, if k is the integer nearest to 2« (T),

and so, N (T) being an integer,

and

Now

NM=k+1.
It is therefore a question of mwvuoﬁﬁmmnm to RC(s) for: <o <2.
We write -
_ =1 2ehrd SN |
t@=% L +(F) xa+in £ 4
_ [2m\o m 1 T(—s
B I B e L

and, taking real parts,

RL (s) = T AE g BB 2n (2« — zlog v)

v 773 yl-e

b+ M+ M,
s2

y=1
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where
A O O T R

) < __x (s) — Aulwvl 1@+ ﬁu + .s,lv ,
an

M, < ZE=9 5@l

We shall not pursue these calculations in detail, but it is easy enough to
see that RE(s) >0(3 <06 <2) for certain values of t. Take, for
example, T = 62-06 (suggested by the table). The cosines in the above
formula are all positive, so that

RL()>1— M| — My,
For large ¢ the upper bound for | M, | is approximately
(6 — 3)2 (20)7 1 w374,

Theorem 1, combined with lemma ¢, gives an upper bound for | M.
Apart from a few minor terms, it is at its greatest when o = 4, the case
already considered.

We therefore conclude that

N (2r X 62-06) = 195.

This, however, is the lower bound obtainedt for the number of real zeros
of (=) for 0 < 7 < 62-06. Hence { (s) has 195 zeros on ¢ = % between

¢ =0 and £ = 2x X 62-06, and no other zero between these values of ¢.

10—So far as the above calculations go, the method of separating the
zeros of ¢ (% -+ if) by means of the points f, = 2r+, is almost com-
pletely successful. We find that (— 1)* f(=,) is positive for all values of
n up to n = 199 with at most three exceptions, and that in these cases
¢ (3 + if) has a zero only just outside the usual interval (t,, £,4,)-

Nevertheless, this process cannot go on in the same way indefinitely.
We shall now show not merely that (— 1)*f (=,) cannot be positive for
all values of » (which the calculations have already shown), but that it
cannot be positive for all sufficiently large values of n.

The proof consists mainly of a combination of known theorems on

L ().

T We rely on previous calculations for the first few zeros.

zero at v,
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Let N (T) be the number of zeros B + iy of () with0 < vy =T. It
is known that

N (T) = M (T) + R (T), - (10.1)
where .
Zﬁvnmhaq_omql_+mmmuaa+$ (10.2)
and
_ "R (#) dt = O (log T). (10.3)

It follows that R (£) = O for arbitrarily large values of t. For let the
zeros of ¢ (s) with positive imaginary parts be arranged in order 8, + iy,
of non-decreasing ordinates (multiple zeros occurring with the right order
of multiplicity). Suppose that v, < Y., for a certain value of n. Then
N(@) =nfor v, £t < Yns,r Since M (¢) is steadily increasing, R (¢)
is steadily decreasing in this interval. Let /(¢) be the linear function of ¢
which takes the values R (v,) and R (y,+; — 0) .at v, and v,;, respec-
tively. Then in this interval | | |

1() — R () = {R (Ypss — 0) — R (vs)} w.ﬁu|< — {R(®) — R (Ya)}

I

— (M (4as) — M (1)} ml....mﬂ M) — M ()

= — M (E)(t — va) + M (D (£ — v,)
=M Amv Amw - muv Q. - 439...

where v, < & < Yn+1 Yo < E2 <1, and & lies between &, and £,. Now

1

M ()= 5.

Hence

1(®) — R (@) = O {(Yass — Yo/ ¥n} = O (1/7,),

since y,., — Y. is bounded. |
Suppose now that R (f) =0 for ¢ >a. Since there is at least one

Since M (¢) is continuous, it follows that
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and so, on our hypothesis, R (y,) = 1. Hence

_;.:: R(@®)dt = ﬁ:f (B dt + O {(Ypr1 — ,?: Ya}

T ¥n

= W.A4=+H - .%:v .mw ﬁe.av + HﬂAJ\=+H - Ovv |_l o AA.<3+u - Jﬁav\.%:w
= .w. A.<=+H - Jﬂav +0 mA.ﬁi.H - <3v\<=w
=3 (Ynr1 — Yn)

for sufficiently large n. If v,., = Y., both sides of the inequality are 0.
Hence, summing with respect to n from a sufficiently _m_.mo starting-point
Ros

?we&w:;:;:
1o

which contradicts (10.3). A similar contradiction is obtained if R(#) <0
for t > a.
Since R (?) can only pass from a positive to a negative value by passing
through 0, it follows that R (¢) = 0 for some arbitrarily large values of ¢.
Suppose now that (— 1)" f(¢,) >0forn <n;. Then ift, <t <1,y

No(@)zn—n =2k(tyy) —n >2(@) —n >M(@—0(Q),

and so
No@®>M(@)—0()

for all values of £. Let t* denote a sequence tending to infinity such that
R(*) = 0. Then N (T*)= M (T*). Hence

N, (#*) > N(T*) — O (D).

Hence the number of complex zeros of ¥ (s) not on the line o = % is
finite. Hence for all values of ¢

N@O=N,@®O+0oMHz=zM@®+0(Q),
R (¥) = O (1).
But it is knownt that, on the Riemann hypothesis,
R () < — (log?y

for arbitrarily large values of ¢, ¢ being an absolute constant; and the
possible existence of a finite number of complex zeros of { (s) not on
o = 4 does not invalidate this result. The hypothesis that (— 1)* f(z,) is
ultimately positive is therefore untenable.

ie.,

t Bohr and Landau, ¢ Math. Ann.,” vol. 74, p. 3 (1913).
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It can be proved in the same way that, if ¢, is the nth zero of £ (3 + i1),
then (¢, — #,)/(t,+; — t.) is unbounded; for if it is bounded we again
deduce that N, (£) — M (¥) is bounded.

11—The occurrence of so many zeros of £(s) on ¢ = % might be claimed
as an argument in favour of the Riemann hypothesis, but I think that a
closer examination of the situation shows that it is not a very strong
argument. The calculations show that departures from * Gram’s law,”
that the numbers ¢, and ¢, interlace, are very slow in occurring; and yet
arbitrarily wide departures from this law, in the sense of the remark at
the end of the last section, must ultimately occur. A still wider departure
from regularity such as would be needed to produce a zero off ¢ = %
might .well be still more remote.

There are relations between the numbers cos (¢ log v) which have a
certain influence in making (— 1)"f(¢,) positive. For example, if 6, 4,
and ¢ are independent,

BET+oom¢+8mﬁ+8mev T B 1 <0;

VI V3 TNEIT T2 BT
but
. cos®  cos¢ , cos(0+ @)\
BEA_+ 2 +73 + 6 )= 1%
so that .

cos (tlog2) , cos(tlog3) , cos(tlog6)
1+ 72 + 73 -+ V6 >

Apparently such relations succeed in preserving “ Gram’s law ” so long

as the series = v cos (¢ log v) does not contain too many terms, but
=

exceptions ultimately occur. The calculations do not suggest any

reason why exceptions to * Riemann’s law,” that the zeros lie on o = 4,

should not ultimately occur too.

SUMMARY

An m@waoﬁEmﬁ formula for the Riemann zeta-function in the critical
strip is obtained in a form suitable for calculation. It is used to show
that the first 195 zeros in the upper half-plane lie on the critical line. The
problem of the zeros is also investigated theoretically.






