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Preface 

A L T H O U G H it is well known that for a proper discussion of atomic 
properties one needs wave mechanics and that the old quantum 
theory developed by Bohr, Sommerfeld, Kramers and many others 
between 1913 and 1926 is not a proper basis, there are many 
atomic phenomena which receive at least a qualitative explanation 
in the old quantum theory. An account of this theory seems 
therefore to be of some interest and in the present volume we 
sketch how it developed from Planck's first papers on black-body 
radiation through Einstein's and Rutherford's work to the rather 
complicated theory which was finally replaced by Schrödinger's 
wave mechanics and Heisenberg's matrix mechanics. 

I should like to express my thanks to Professor R. E. Peierls 
for useful criticism, to Mrs. D. Gordon of the Yale Physics 
Department for her help in locating the relevant literature, and to 
my wife for help in preparing the manuscript. This book was 
written during a stay at Yale, and I should like to express my 
gratitude to Professor W. E. Lamb, Jr., and to other members of 
the Yale Physics Department for their hospitality. Finally, I 
express my thanks to the authors and publishers of the papers 
reprinted in Part 2 for their permission to do so. 

D. TER H A A R 



Introduction 

T H E nineteenth century saw the beginning of the enormous 
expansion of physics, which in the second half of the twentieth 
century is showing signs of exploding and of fragmenting physics 
into a collection of only loosely connected specialized disciplines. 
In the latter part of the nineteenth century it was felt that the laws 
of nature were well understood and that only patience and 
perseverance were needed to explain all physical phenomena. 
However, the first signs were beginning to show that there might 
still be effects which fell outside the framework of nineteenth-
century physics. The atomistic nature of matter was known, but 
it was not yet realized in how far the classical, Newtonian laws 
were inadequate to explain phenomena at the atomic level. 
The present volume is concerned with the story of how the classical 
laws were modified by Planck, Einstein, Rutherford, Bohr and 
others to account for atomic phenomena. We shall be mainly 
concerned with the development of quantum theory from its 
start at the very end of the nineteenth century until the beginning 
of the twenties. A companion volume (Ludwig, 1967) will 
describe the change from the old quantum theory to the wave 
mechanics of Schrödinger and Heisenberg, while another 
volume (Hindmarsh, 1966) is devoted to a discussion of atomic 
spectra. 

The old quantum theory although being, as we now know, an 
incomplete theory, by being based upon classical mechanics can 
be more easily visualized and, therefore, can give the student a 
rough idea of the processes which are important in atomic 
phenomena. For a more thorough understanding of such 
processes, one must have recourse to quantum mechanics text-
books (e.g. Landau and Lifshitz, 1965; Davydov, 1965), but for a 
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first rough guide, the old quantum theory still has its undoubted 
merits. 

In presenting the history of quantum mechanics from 1900 to 
the development of wave mechanics within the confines of a 
paperback, we must, of necessity, leave out much of interest. 
Roughly speaking, we shall discuss first of all Planck's discovery 
of his radiation law. Then we turn to Einstein's introduction of 
quanta. Next comes the Rutherford model of the atom and 
Bohr's postulates, so beautifully confirmed by the Franck-Hertz 
experiment. We conclude with a description of how Bohr's theory 
could explain the main features of the atomic spectra and with a 
brief summary of other important developments in the period 
covered by us. 

There are many places where one can find an account of the 
historical development of the old quantum theory. Among semi-
popular accounts, we may refer to Abro's book (1951), the 
account by Kramers and Hoist (1923), and various articles in 
Science and other journals (Meissner, 1951; Einstein, 1951; 
Sommerfeld and Bopp, 1951; Mendelssohn, 1959; Bohr, 1962; 
Condon, 1962; Peierls, 1964). Accounts containing more scientific 
details can be found in various books. We mention only a few: 
the proceedings of the early Solvay Congresses (Solvay Congress 
1911, 1913, 1921), those of the 1913 Wolfskehl meeting (Planck 
et al, 1914), Sommerfeld's famous textbook (1923), Pauli's 
articles in the first edition of the old Handbuch and in Miiller-
Pouillet's book (Pauh, 1926, 1929), Rubinowicz's article (1933) in 
the old Handbuch, two articles by Rosenfeld (1936, 1963), 
Whittaker's comprehensive monograph (1954), and Tomonaga's 
textbook (1962). Various papers by M. J. Klein (1959, 1962, 
1963 a, b , 1964, 1965) also contain useful discussions of specific 
points. We have made extensive use of most of these, and we 
refer to them for many details which we have omitted and for a 
discussion of those topics which lack of space prevented us from 
considering. 



C H A P T E R I 

The Black Body Radiation Law 

I T IS well known that a study of the black body radiation led 
Planck to the introduction of the quantum of action which then, 
through the work of Einstein, Bohr, Schrödinger and Heisenberg, 
was extended into modern quantum mechanics. The story of how 
Planck was led to the radiation law which bears his name has 
often been told (Rosenfeld, 1936; Einstein, 1951; Whittaker, 1954; 
Klein, 1962) and is also recounted by Planck himself, both in his 
Nobel Lecture (1920) and in personal reminiscences written, when 
he was eighty-five (Planck, 1943; see also Planck, 1949), to 
preserve for posterity the reasoning which led to the radiation law. 
However, it is instructive to compare these reminiscences with the 
many papers written by Planck between 1896 and 1900 (all 
Planck's papers were collected and reprinted on the occasion of 
the centenary of his birth (Planck, 1958) and are thus more or less 
readily available) as the development of Planck's ideas was not 
quite as uneventful as he remembered it to be.f 

In the last half and especially the last decade of the nineteenth 
century, a great deal of effort was concentrated, both experi-
mentally and theoretically, on finding out how the energy of the 

tThis is also hinted at by von Laue in the preface to Planck's Collected 
Papers. Especially the importance of Kirchhoff's law that the radiation 
spectrum is independent of the nature of the black body, which Planck gives 
as the guiding principle of his investigations both in his Nobel Lecture and in 
the 1943 paper, is not referred to by him in any of his earlier papers on the 
subject, but only in the 1899 paper (Planck, 1899), which was later condensed 
by him together with four others in a paper in the Amalen der Physik 
(Planck, 1900a). Planck's own account of the developments has been repeated 
by Rosenfeld (1936), who bases his account clearly on Planck's Nobel Lecture. 
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radiation emitted by a black body was distributed over the various 
wavelength—or frequencies. The names of Kirchhoif, Wien, 
Rayleigh and Jeans are closely connected with these developments, 
as well as that of Planck. A body at a definite temperature Τ will 
both emit and absorb radiation. If it absorbs all the radiation 
incident upon it, it is called a black body. From this it follows 
(Kirchhoif, 1859) that the radiation emitted by a black body will 
depend only on its temperature, but not on its nature: if we 
consider a number of bodies in equilibrium inside a cavity, the 
walls of which are kept at a constant temperature T, we should 
reach an equilibrium situation. At equilibrium, the ratio of the 
radiation of a given wavelength absorbed by one body to the 
radiation of the same wavelength emitted by the same body should 
be unity, as otherwise there would not be equilibrium. As the 
radiation absorbed will be determined by the radiation density in 
the cavity and hence by its temperature, we find that the radiation 
emitted by a black body will be a function of Τ only. 

We now define i/(v, T) dv as the energy density of all radiation 
components with frequencies between ν and v + rfv. It is remark-
able how much one can find out about u(v,T) from general 
considerations without considering a specific model. In fact we 
shall show presently how, from general thermodynamic con-
siderations, one can derive that w(v, T) must have the form 

u(v,T) = v'f(vin (1.1) 

From this it follows, first of all, that if the spectral distribution 
shows a maximum at a frequency —as was found to be the case 
experimentally, long before it was proved theoretically—this 
frequency will shift with temperatures in such a way that 

vJT = constant, (L2) 

or, if we introduce wavelengths instead of frequencies, 

2„ Τ = constant, (L3) 

which is Wien's displacement law (1893). 
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«α,Γ) = 5/(̂ ). (1.4) 
where c is the velocity of light (c = ν λ). The condition dw/dA = 0 from 
which we find the wavelength Xm at which the maximum occurs is then 
the solution of the equation 

-&[έ̂ '(έ)+<έ)]=«' <̂·̂> 
from which equation (1.3) follows. 

Secondly, we find from equation (1.1) the Stefan-Boltzmann 
law (Stefan, 1879; Boltzmann, 1884) which states that the total 
radiation energy density, u{T), is proportional to the fourth 
power of the absolute temperature. Indeed, 

u(T) = 

= Τ 

u{v,T)dv = 
0 J o 

v^f{vlT)dv 

y'f(y)dy, y = vlT. (1.6) 
0 

To prove equation (1.1), we shall proceed slightly differently 
from Wien's procedure (1893; see, for instance, Planck, 1921, or 
Bom, 1935) by using the concept of parameter or adiabatic 
invariance,t following a discussion given elsewhere (ter Haar and 
Wergeland, 1966, § V. 3. 3). The proof consists of three parts : first 
we show that in a reversible adiabatic transformation the ratio 
v/r is invariant; secondly, we note that the total energy of the 
radiation field can be written as the sum of the contributions from 
different frequencies and that each contribution can be written as 
a function of ν /Γ multiplied by Γ or by ν ; finally, we find the 
number of eigenfrequencies in a volume V lying between ν and 
v+dv and thus we can obtain the total energy density in that 
region, for which we find equation (1.1). 

tFor a discussion of adiabatic invariance see, for instance, the review 
article by Ehrenfest (1923). 

The proof is simple. From equation (1.1) it follows that if α{λ,Τ)άλ 
is the energy density for wavelengths between λ and λ-\-άλ, it is given 
by the expression 
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/2 + , „ 2 ^ „ 2 ^ (L7) 

where /, m, and η are integers. 

We now first of all note that if we consider an adiabatic change 
in F, the quantities /, m and η being integers and thus being unable 
to change infinitesimally will remain invariant. Under an adiabatic 
transformation vL will thus be invariant, or introducing the 
volume Κ instead of L : 

v^K = invariant under adiabatic transformation. (L8) 

One can prove that this result is independent of the shape of the 
volume. 

It will be more convenient to have a relation between ν and Τ 
rather than between ν and V. To find that relation, we must 
consider the entropy of the radiation field. From electromagnetic 
theory (for instance, Planck, 1921, § 59) it follows that the radiation 
pressure Ρ is one-third of the total radiation energy density u{T): 

P = Mn (1.9) 

Combining equation (1.9) with the thermodynamic equation of 
state (ter Haar and Wergeland, 1966, §11.7.1) 

fdU\ 
(1.10) 

and the relation U = uV, gives us 

« = i r ^ - i « , (1.11) 

We shall consider the radiation field in a volume Kin the shape 
of a cube of edgelength L with reflecting walls. The equilibrium 
radiation field will then consist of standing waves, and the con-
dition that the electric field vanish at the walls which means that 
one must "fit" the electromagnetic waves into the cube leads to 
the following relation for the frequency: 
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or u = αΤ\ (1.12) 

in accordance with equation (1.6). 
Combining equations (1.9) and (1.12) with the thermodynamic 

Maxwell relation 

[dVjr - [dTj 
(1.13) 

we find S = iaT''V. (1.14) 

Comparing equations (1.14) and (1.8), we see that under an 
adiabatic (or isentropic) transformation the ratio ν /Γ must be 
invariant, which concludes the first part of our proof 

As the resolution of a spectrum into its components—by means 
of gratings, say—is a reversible process, the entropy s per unit 
volume can be written as the sum of contributions Sy(T) corre-
sponding to different frequencies. Each of these terms, being a 
function of ν and being the entropy density corresponding to the 
specific frequency v, can depend on ν and Γ only through the 
adiabatic invariant ν/Γ, or 

s = Σs(v/T). (1.15) 
V 

Writing «(Τ) = Σ « , ( Γ ) . (1.16) 
V 

and using equation (1.12) and (1.14), from which follows that 

"JT-
and hence «,(T) = Γ/ ι (ν /Γ) = νΛ(ν/Γ), (1.18) 

and thus u(T) = Σ vfiiv/T), 
V 

= JvZ(v)dv/2(v/r), (1.19) 

corresponding to the following equation for the function w(v, Γ ) 
defined at the beginning of this section i f 

t Whereas u^(T) is the energy density corresponding to one of a set of 
discrete frequencies which has the dimensions of energy per unit volume, 
u(v, T) is the energy density per unit frequency range with dimensions energy 
per unit volume per unit frequency. 
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u(v ,r) = vZ(v)A(v/T). (L20) 

In equations (1.19) and (1.20), Z{y)dv is the number of frequencies 
between ν and v + rfv which is present in the radiation. From 
equation (1.7), we see that the number is proportional to the 
number of points with integral coordinates within the spherical 
shell between the spheres with radii vL/c and (v+dv)Llc, and we 
find thus 

Z(v) = Cv^ (L21) 

where C is a constant ( = 8π/c^), independent of v. Combining 
equations (1.20) and (1.21), we find equation (1.1), which concludes 
our proof 

We have now exhausted the information which can be obtained 
from the thermodynamics alone. The form of the function of 
/ ( ν / Γ ) in equation (1.1) cannot be obtained this way. We shall, 
however, follow Planck's reasoning (1900a) and pursue the thermo-
dynamical argument a little further. We can use Kirchhoff's law, 
which states that the radiation field is the same independent of 
what body is in equilibrium with it. Therefore we assume that the 
black body consists of a system of Hertzian vibrators, that is, 
radiating harmonic oscillators, as such a system enables us to 
calculate the radiation field explicitly. The radiation emitted per 
unit time by an oscillating dipole is given by the expression (for 
instance. Born, 1935) 

E . „ . - 3 ^ i . (1.22) 

where e, m and ε are the oscillating charge, its mass, and the 
average value of the energy of the harmonic oscillator. Similarly, 
the energy absorbed per unit time by the vibrator is given by 

£ . b s = f^'«(v,r). (1.23) 

In equilibrium E^^^^ = £'abs, or 

«(ν ,Τ) = ^ - ^ ε - . (1.24) 
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The natural thing to do would now be to take for έ the average 
energy of an harmonic oscillator at a temperature T, If Planck 
had done this, he would have used the classical value kT 
(k = Boltzmann's constant; see, for instance, ter Haar, 1966, §2.4) 
for the average energy of a one-dimensional harmonic oscillator 
and would have obtained the so-called Rayleigh-Jeans law 
(Rayleigh, 1900; Jeans, 1905), which was, indeed, obtained by this 
method, Jeans' contribution being essentially the correction of a 
numerical factor in Rayleigh's expression: 

8πν^ 
uiv,T) = -^kT, (L25) 

which is—as should be the case—an example of equation (1.1). 
Fortunately, it is likely that Planck was not aware of Rayleigh's 

paper because he would almost certainly have agreed with 
Rayleigh's reasoning even though it was well known that 
expression (1.25) did not agree with experimental data.f In fact, 
until 1900 the experimental data were better represented by 
Wien's law (1896): 

w(v,T) = fcv3e-"^/'^. (L26) 

As Planck himself remarked on several occasions (1943, 1949), 
very few physicists were interested in entropy, a subject which he 
had studied for most of his active career. Most people were 
trying to find the energy density of the radiation field as function 
of V and T, but Planck suspected that the key to the problem was 
to be found in the relation between the entropy density and the 
oscillator energy ε. 

To find this relation, Planck (1900b) proceeded as follows. 
Consider a set of η identical, independent oscillators, which 
behave in exactly the same way. Their total energy ε„ is then equal 
to «ε, the excess of this energy over the equilibrium value 
« Δε = Δε„, the rate of change dejdt = η de/dt, and their entropy 
S„ = nS. The change in the energy of this set of oscillators will 

t Klein (1962, 1963a) suggests that Planck knew of Rayleigh's paper, but 
did not attach any significance to it. 
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Assuming now (i) that the same expression holds for the set of η 
oscillators and (iO that the rate of change of the entropy of η 
oscillators is equal to η times the rate of change of the entropy of 
a single oscillator, we find 

^ " Δ ε , / ( 0 = Μ ^ Δ ε / ( ε ) , (L28) 

or / (ηε) = - / ( ε ) . (L29) 
η 

The solution of this functional equation is / ( ε ) = constant/ε, 
and thus we have 

da' " ε' 
(L30) 

dS 
or — = - α ΐ η ^ ε . (L31) 

αε 

Combining this with the thermodynamic relation 

dS _1 

Is ~ T ' 
(1.32) 

we find e = -e -^ /«^ . (1.33) 
Ύ 

From the equation (1.24) and the knowledge that u(y,T) must 
satisfy equation (1.1), we now obtain Wien's law (1.26). 

In fact, Planck had derived Wien's law in his earlier paper 
(1900a), but had clarified his proof in the later paper (Planck, 
1900b) as evidence began to accumulate against Wien's law. 

be related to an increase in entropy. Planck showed that for a 
single oscillator the rate of change of the entropy satisfies the 
equation. 
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However, the experimental evidence that at longer wavelengths 
Wien's law did not agree with experiments became too over-
whelming, and Planck became obliged to modify his argument. 
He realized that it might be possible—although, as he himself put 
it, "not easily understandable and, in any case, difficult to prove" 
—that the left-hand side of equation (1.28) could not be found by 
the argument given, but that it might depend on ε in a more 
complicated manner. Instead of using equation (1.30), Planck 
tried other expressions for d^S/dé^ and found that the relatively 
small change to 

^ - - ^ (134) 
de^ ε(β+ε)' ^ ^ ^ 

together with equations (1.32) and (1.24) leads to 

the expression which bears Planck's name and which was and is 
in excellent agreement with experimental data. In equation (1.35) 
a and b are related to a' and β by the equations 

« v = ^ „ í>v = pi?. (L36) 

Once Planck had seen that his radiation law fitted the experi-
mental data, he tried to invest the formulae—which had been 
derived completely by an ad hoc argument—with a physical 
meaning. He had "until then not bothered about the connexion 
between entropy and probability" but "after a few weeks of the 
most strenuous work of his Hfe" he presented on 14 December 
1900 (Planck, 1900d; reprinted in this volume on p . 82), less than 
two months after he had presented the Planck radiation law 
(Planck, 1900c; reprinted in this volume on p. 79), a derivation of 
equation (1.35) based upon Boltzmann's relation between entropy 
and probability, 

S = klnW, (L37) 
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where A: is a constant and Wthc probability that a certain state is 
realized. We may note here that k in Boltzmann's papers 
appeared in the ratio of the gas constant R and Avogadro's 
number iV̂ v that it was Planck who was the first to introduce k 
so that its name Boltzmann's constant is a slight, though under-
standable, misnomer. It was also Planck who determined its 
numerical value for the first time and Meissner (1951) suggests 
Planck-Boltzmann constant for k, while Lorentz often refers to it 
simply as Planck's constant. Planck himself calls ^k (the average 
kinetic energy at absolute temperature Γ Κ ) the Boltzmann-Drude 
constant. 

To find W, Planck proceeded as follows. Let Sj^ again be the 
energy of the Ν oscillators of a given frequency and let ε be their 
average energy; we have 

6jv = Νε (L38) 

while for the entropy we have 

= NS, (L39) 

if we assume that the oscillators are independent. To find W it is 
necessary (as noted by Planck) to consider as a quantity which 
can only be divided into an integral finite number Ρ of equal 
parts Δ and not as a quantity which can be divided continuously 
into infinitesimal parts; we thus have 

ε^ = ΡΔ, (1.40) 

where Ρ is a (large) integer, and the number of ways W, in which 
we can divide the Ρ equal parts over the Ν oscillators is given by 
the equation 

(N-iy.pi ^ ' 

This follows as W is the number of ways in which N— 1 strokes 
and Ρ dots can be arranged (see Fig. I . l ) . 

(•••I-I-II-I-I I") 
F I G . I . L The {N— 1) strokes divide the Ν resonators and the dots 

represent the Ρ quantities Δ. 
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As Ν and Ρ are large numbers, we can neglect the Ts in the 
enumerator and the denominator of (1.41) and use for the 
factorial the StirUng formula 

(1.42) 

so that we get from equations (1.37), (1.41) and (1.42) 

Sjv = fe{(^ + P ) l n ( i V + P ) - i V l n i V - P l n P } , (L43) 

or, from equations (1.40), (1.38) and (1.39), 

S . . { ( l + i ) l n ( l + i ) - i | „ i } . (1.44) 

From equation (1.44) we find 

d^S -k 
(1.45) 

dé^ ε(Δ + ε) ' 

which is in fact the same as equation (1.34) with 

fc = α', Δ = i?. (L46) 

From equation (1.18) it follows that Γ/ν is a function of ε/ν and 
thus from equation (1.32) that .S is a function of ε/ν. Comparing 
this with equation (1.44) it follows that Δ must be proportional 
to v: 

Δ = ftv, (L47) 

and we can then use equations (1.35), (1.36), (1.46) and (1.47) to 
find for the radiation energy density: 

«(v,r) = ^ p ¿ - ^ . (1.48) 

As Planck himself emphasizes, to obtain agreement between 
(1.48) and the experimental data, it is necessary to keep h finite, 
although classical arguments require the limit Λ 0, which leads 
to equation (1.25). As Planck wrote in 1943: "Now the theoreti-
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caUy most difficult problem arose to give a physical meaning to 
this peculiar constant (A), as its introduction meant a break with 
classical theory which was much more fundamental than I had 
suspected at the beginning During many years, I time and 
again attempted to fit the quantum of action in the framework of 
classical physics." It was not until Einstein's introduction of light 
quanta that the physical meaning of h and of the basis of Planck's 
theory became clearer (see next chapter). 

From the experimental data on u(y,T) Planck was able to 
determine the numerical values of h and k for which he found 
(Planck, 1901) 

h = 6-55 X 1 0 " ^ ' ' e r g sec, k = 1-346 χ 10-^^erg/°K, (1.49) 

which are remarkably close to the present values (Cohen and 
DuMond, 1963): 

h = 6-626 X 10" 2 ' e rg sec, k = 1·3805χ lO-^^erg/^K. (1.50) 



C H A P T E R II 

Light Quanta 

P L A N C K ' S papers seem to have been hardly noticed by his 
contemporaries and certainly the impUcations of his procedure 
were not realized. In 1905 Einstein published in one volume of 
the Amalen der Physik three epoch-making papers (Einstein, 
1905a, b , c; the first of these is reprinted in this volume on p . 91). 
One was his paper on Brownian motion, one his paper on the 
special theory of relativity, and the first of the three papers—for 
which Einstein received his Nobel Prize, which was not awarded 
for his work on the relativity theory—was his introduction of 
light quanta. Although Einstein quotes Planck's radiation law, it 
is only because it was known to represent better than any other 
formula the experimental data. Einstein felt then, as he states in a 
later paper (Einstein, 1906), that his and Planck's considerations 
were to some extent complementary, but in this later paper he 
shows that, in fact, Planck was using the concept of light quanta 
which he developed in his 1905 paper. 

Although one often reads the statement that Einstein was 
concerned in his 1905 paper with an explanation of the photo-
electric effect, a study of the paper reveals that this is not the case; 
in fact, the measurements of this effect at that time were not really 
sufficiently accurate to point without any doubt to a violation of 
classical behaviour. In his paper, Einstein sketches how he came 
to the idea that a ray of light when propagating through space is 
not continuously spread over space, but consists of a finite number 
of light quanta—or energy quanta, as Einstein calls them. From 
his account it becomes clear that he was worried not so much by 
the evidence concerning the photo-electric effect as well as by the 

1 5 
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G = 
av 

(2.1) 

If Ε is the total energy in a volume V in the frequency interval 
V, v + i/v and S its entropy, so that we have 

Ε = Vu(v, T)dv, S = aV dv, (2.2) 

we find from equations (2.1) and (2.2) 

^1 
s= 

av 
(2.3) 

and if we compare the entropy S with the entropy Sq of the same 
amount of radiative energy Ε in the same frequency range, but 

t Einstein uses the term "radiation density" often when he means 
"temperature", without clearly stating their interrelation. 

impossibility of fitting black-body radiation into classical Maxwell 
theory, and that he appealed to ñuorescence, photo-electricity, and 
photo-ionization data as evidence in favour of his thesis. 

It is interesting to follow Einstein's reasoning and to compare 
it with some of the steps in Planck's derivation of the radiation 
law. First of all, Einstein points out that classical theory should 
lead to Rayleigh's law (1.25) for the radiation density—in con-
tradiction to experimental data—and that this radiation density 
would lead to an infinite energy density in space, if it were valid 
for all values of ν—what is nowadays called the ultraviolet 
catastrophe. He noted that Planck's radiation law, which he 
quotes in the form (1.35) rather than (1.48), leads in the limit as 
r/v is large to the classical formula (1.25), and he concludes that, 
therefore, for long wavelengths and high temperaturesf the 
classical argument should be valid. However, for small values of 
Tjv the classical theory is clearly insufficient. 

For low temperatures and short wavelengths, Planck's law goes 
over into Wien's law (1.26). In the region where Wien's law is 
valid we get by integrating equation (1.31) and using equations 
(1.26), (1.24) and (1.33), for the entropy density σ the equation 
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within a volume VQ, we find 

S - S , . | l n l . (2.4) 

Comparing this with the formula for the entropy change of a 
perfect gas of η particles (e.g. ter Haar and Wergeland, 1966, §2.5), 

S - S o = n f c l n ^ , (2.5) 

Einstein concluded that in the region where Wien's law is valid, 
one can say that thermodynamically speaking monochromatic 
radiation consists of independent energy quanta of magnitude 
kav, or using the fact that a = h/k of magnitude Av. 

Having thus shown the plausibility of the concept of light 
quanta from considerations of black-body radiation under con-
ditions where Wien's law holds, Einstein points out that, on this 
basis, one would expect that in fluorescence the emitted light 
should have a lower frequency than the incident light (Stokes' 
rule), that in the photo-electric effect the energy Ε of the electrons 
freed from a metal by an incident Ught ray should be independent 
of the intensity of the light, but depend on the frequency ν of the 
light in a linear way, as follows if 

Ε = 1ιν-φ, (2.6) 

where φ is the energy needed to free an electron from the metal 
(the work function), and finally that for photo-ionization also the 
frequency of the light must exceed a limiting value. 

In his 1906 paper, Einstein states that he had now realized that 
light quanta occur in an essential way in Planck's derivation of 
the black-body radiation law. He then states the essential assump-
tions implied in Planck's arguments: (i) the energy of a resonator 
must be an integral number of Av; (ii) the energy of a resonator 
changes discontinuously in absorption or emission by an amount 
which is an integral number of Av; and (iii), in using equation (1.22) 
one applies Maxwell's theory; although it is not applicable to the 

t It is interesting to note that equation (2.6) is a special case—for the case 
of continuously changing energies—of the Bohr relation (4.8). 
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1 
SiE) = S{EoH-[ ) (£-£o)H..., (2.8) 

0 

since (dSldE)o vanishes. Note that as S(Eo) is a maximum, 
{d^SldE\ is negative. 

From equations (2.7) and (2.8), we now find for the fluctuations 
in energy 

resonators, one may put the average energy of a resonator equal 
to the energy evaluated from the Maxwell theory. There still 
remains one point which must be cleared up. Going through 
Einstein's reasoning backwards, one ends up not with Planck's 
radiation law but with the Wien law. We must yet find another 
link in the chain, which leads from the quantum hypothesis to the 
black-body radiation law. Planck's derivation of expression (1.41) 
for W meant that each state in which there are n^ quanta Av^, 
«2 quanta Av2,... has the same statistical weight. If we had 
applied classical arguments, the weights would not have been 
equal, but inversely proportional to « l Í W j ! . . . (compare the 
discussion in ter Haar, 1966, chap. IV). This point was made by 
Einstein in his paper on the theory of specific heats (Einstein, 
1907). Nowadays we would say that it expresses the fact that 
light quanta or photons are bosons. In this connexion, it is of 
interest to return to equations (1.34) or (1.45) (see Einstein, 1909). 

Let us now invert equation (1.37) to obtain an expression for 
the probability Ρ for finding a state with entropy S: 

P^C^¡\ (2.7) 

where C is a normalizing constant. 
If we now consider a situation where S and thus Ρ are functions 

of the energy Ε and where Ε can fluctuate around its equilibrium 
value EQ, for instance, because Ε is the energy of a small part of 
a larger system, the total energy of which is fixed, we can use 
equation (2.7) to calculate the dispersion in E, The equilibrium 
value EQ is clearly determined from the condition that Ρ be an 
extremum, so that we find on expanding S{E) around EQ that 
we have 
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ΑΕ -iE-Eo) j ^ ^ ^ 

-k\ 
dE^ 

(2.9) 

which shows the physical meaning of the left-hand side of 
equation (1.34). 

We now wish to apply this formula to the radiation field. 
Using equations (1.45) and (1.47), we get 

Δε2 = β2 + Ανε. (2.10) 

If we write έ = nhv in accordance with Einstein's light quanta 
hypothesis, this equation becomes 

An^ = {n-noy = nl-l·no. (2.11) 

This is, indeed, the formula for the ñuctuations in the number of 
bosons (see, for example, ter Haar, 1966, chap. VI). We note that, 
if we neglect the first term on the right-hand side of equation (2.11), 
we would have found for An^ exactly the expression we would 
have expected for the random fluctuations in the number of 
independent particles within a certain volume: it expresses the 
corpuscular nature of light. The fact that there is a second term 
expresses that the quanta are not independent: their inter-
dependence is a statistical one, which we express by saying that 
photons are bosons. 

Another way of looking at the first term on the right-hand side 
of equation (2.10) is to say that it expresses the wave nature of 
light. To see this, we remind ourselves that in classical electro-
magnetic theory fluctuations arise from the interference of light 
rays with approximately the same wave vectors. Without going 
into a detailed calculation of this term, based upon classical 
electromagnetic theory, we can use dimensional analysis to find 
its form—apart from a possible dimensionless multiplying factor 
of order of magnitude unity (Einstein, 1909). 



20 THE O L D Q U A N T U M THEORY 

AE^ = Ae^ Z(v)V dv = Δε^ Z(v)V dv, (2.12) 

with Z(v) given by equation (1.21). Secondly, we expect that AE^ 
will depend only on the wavelength λ {=φ), dX {=cdvlv% the 
radiation energy density u(X,T) [=u(v,T)(dvldX)], and V. 
Moreover, because of the independence of the various components 
of the radiation field, we would expect AE^ to be proportional to 
V and dX. From dimensional arguments, it then follows that we 

have 
AE^ = C[u(X, Tyj^X^'VdX, (2.13) 

where C is a numerical factor which the exact calculation shows 
to be equal to 1/8π. Using equations (2.12) and (1.24), we see that 
equation (2.13) indeed gives the first term on the right-hand side 
of equation (2.10).t 

Photons possess momentum as well as energy. If the number 
of photons with frequency ν per unit volume is n^, the energy 
density is n^hv and the energy flux density cn^hv. One of the 
consequences of the theory of relativity and the equivalence of 
mass and energy is, as was shown by Planck (1908), that the 
momentum density of the radiation field is equal to the energy 
flux divided by c^. This leads to a momentum density equal to 
n^hv/c, showing that the momentum of a photon is equal to its 
energy divided by c (compare also Einstein, 1917, and the 
discussion in Chapter VI). 

This result was obtained by Einstein (1909) by a consideration 
of the Brownian motion of a reflecting mirror in a gas in which 
there is also black-body radiation. The collisions of the gas 

t A simpler derivation of equation (2.10) or of the complete equation for 
is given by a straightforward thermostatistics argument (e.g. ter Haar, 

1966, §8.2). 

We first of all notice that as the components of different 
frequencies are independent, the total dispersion in the energy Ε 
corresponding to radiation with frequencies between ν and v-\-dv 
in a volume V, will be given by the equation 

rv+dv 
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molecules will make the mirror move. Its motion will be subject 
to frictional forces, partly due to the gas, but partly due to the 
fact that the radiation pressure on a moving mirror is different on 
its two sides. If there were no fluctuations in the radiation 
pressure, the net result would be that the energy of the gas would 
be transformed into radiative energy: there would not be an 
equilibrium situation. Equilibrium exists because there are fluctua-
tions in the radiation pressure such that the force on the mirror is 
just sufficient to restrict the kinetic energy of the mirror to ^kT as 
required by the general theory of Brownian motion. One can use 
electromagnetic theory to calculate the radiation pressure fluctua-
tions and the result is (Einstein and Hopf, 1910) that the fluctuations 
in the momentum density are exactly 1/c times the fluctuations in 
the energy density as following from equation (2.10), from which 
follows that the momentum of a photon is equal to hv/c. 

In Chapter VI we shall discuss Einstein's contribution to the 
theory of the emission and absorption of light by atoms, but we 
shall conclude the present chapter with a discussion of Einstein's 
theory of specific heats (1907). Soon after his 1905 and 1906 
papers on the light quanta hypothesis, Einstein came to the 
conclusion that if the theory were to have a firm foundation, the 
average energy ε of a harmonic oscillator should be given by the 
equation (compare equation 1.48) 

Av 

independent of whether we are dealing with one of the Planck 
resonators or with an oscillator occurring in some other physical 
system. If this is the case, we must expect consequences of this 
expression in the thermal behaviour of solids. A crystal of Ν 
atoms will have 3N degrees of freedom. If we assume that all 
atoms are freely vibrating with frequency v, the total energy Ε of 
the crystal at temperature Twill be given by 3Λ^ε, or 

3Nhv 
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and its specific heat by 

CK = ^ = 3Nfc(^g;y[.''v/*--l]-V^/*-. (2.16) 

We first of all note that in the limit as Av <̂  kT, Cy = 3Nk, which 
is the classical Dulong-Petit expression. However, at low 
temperatures when Av > kT, the specific heat dips well below its 
classical value, behaving asymptomically as 3Nk{hv¡kTY e'^"'^'^, 
Einstein compared expression (2.16) with experimental data on 
diamond and found reasonable agreement, although from the 
figure given in his paper (Einstein, 1907, p . 186) it looks as if the 
theoretical value of Cy becomes too small for hvlkT<,Q'2. 
Einstein emphasizes that his theory is correct only if the absorption 
spectrum of the solid shows a single line, and from the agreement 
between the theoretical and experimental data for diamond he 
concludes that diamond should show an absorption maximum at 
a wavelength of 11 μ. The value of ν follows by adjusting the 
theoretical curve, which depends on hvjkT only, until it fits the 
experimental curve. 

Once one accepts the basic assumption of Einstein's calculation 
of the specific heat of solids, one can easily extend it to cover the 
case, where the eigenvibrations of the solid do not have all the 
same frequency, but show a spectrum. Let g{\)dv be the number 
of eigenfrequencies in the range v, v + t/v. As the total number of 
degrees of freedom in the solid is still 3N, we must have 

\{y)dv = 3N. (2.17) 

One can make detailed calculations of g{v), making suitable 
assumptions about the crystal structure and the forces acting 
between the atoms or ions in the crystal. The first such calculations 
were made by Bom and von Kármán (1912, 1913; for a general 
review of such questions, see Blackman, 1955, or Haug, 1967), but 
we shall restrict our discussion to the Debye model of a solid 
(Debye, 1912). Debye considered the solid to be an elastic 
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where s is the velocity of the elastic waves (sound waves) in the 
solid, which we have assumed to be the same for transverse and 
longitudinal waves. The factor 12 rather than 8 occurs here 
because sound waves have three polarization degrees of freedom, 
as against the two polarization degrees of light waves. 

Equation (2.18) holds only as long as ν is less than a maximum 
frequency v„ which is determined from equation (2.17): 

·% 
g(y)dv = 3N, (2.19) 

or 
'3Νγ 

4nv) ' 
(2.20) 

The energy and specific heat of the solid will now be given by 
the equation 

E = 
f hvg(v) dv 

= 9Nhv, (2.21) 

where 

= 9Nk 

hv 

x*dx 

0 { é ' - m - e - ' r 

X = 
kT' 

Θ 
Θ = 

(2.22) 

(2.23) 

We note that Cy is a function of Γ/Θ as is Ejhv^. We also note 
that, whatever the form of ^(v), at sufficiently high temperatures, 
E-*ZNkT&ná Cy 3Nk, leading again to the Dulong-Petit law. 

OQT 

continuum in which the longitudinal and transverse velocities of 
sound were assumed to be equal. In that case, the eigen-
vibrations are elastic waves and by the same argument which led 
to equation (1.21), we find that 

(2,8, 
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On the other hand, the Debye model leads at low temperatures 
(Γ <̂  Θ) to a r^-law for Cy, a behaviour which is in good agree-
ment with experimental data. The quantity Θ which has the 
dimensions of a temperature and which measures the deviations 
from classical behaviour, is called the Debye temperature. For 
typical solids, it is of the order of a few hundred °K, for instance, 
315°K for copper and 170°K for gold. 

The quantum theory as applied to the theory of specific heats 
of solids and, with some reservations on the part of several 
physicists, as applied to the theory of temperature radiation, was 
well established and accepted at the beginning of the second decade 
of the twentieth century, as can be seen from the proceedings of 
the 1911 and 1913 Solvay Congresses, to which most of the leading 
physicists of the time were invited. The next step forward was to 
be found in the development of a theory of atomic structure and 
we shall turn to this in the following chapters. 



C H A P T E R III 

Rutherford's Atom 

A T THE start of the twentieth century many atomic phenomena 
were known, such as radioactivity, and the existence of electrons 
had been demonstrated by J. J. Thomson and used by Lorentz 
to explain the Zeeman effect. As many different methods for 
determining the size of an atom all led to consistent results, it was 
also slowly generally accepted that matter consisted of atoms, but 
the structure of the atoms themselves had not been the subject of 
much speculation. 

In his Silliman Lectures Thomson (1904a; see also Thomson, 
1904b, and for an earlier, similar model, Kelvin, 1902) proposed 
a model of atoms which for about a decade became the generally 
accepted one. Although Rutherford's nuclear model—which is 
nowadays accepted to give a more reliable representation—was 
published early in 1911, there is no mention of it at the 1911 
Solvay Congress, where Rutherford was present, and even at the 
1913 Solvay Congress, which was held after Bohr had pubHshed 
his first paper on the quantum model, the main contribution was 
a long paper by Thomson on his own model, while only in the 
discussion was Rutherford's atom mentioned briefly, and Bohr's 
work was not mentioned at all.f 

Thomson's model was invented to explain radioactivity. He 
assumed that the atom consists of a sphere of uniformly distributed 
positive charge in which are embedded negatively charged electrons 
(which he calls corpuscles). The total charge of the atom was 

t It is interesting to note that at the 1913 Solvay Congress, Lorentz remarked 
that it was doubtful whether a classical model such as Thomson's could lead 
to the true radiation law. 

2 5 
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zero. Thomson first investigated possible electron configurations 
assuming the electrons to be at rest. If the number of electrons is 
small, they can be distributed symmetrically on a spherical surface 
inside the atom, but this configuration is no longer stable when the 
number of electrons becomes large. He suggested possible stable 
configurations following experiments by Mayer (1878, 1879) on 
magnetized needles. Mayer found that if he put these needles in 
corks and made them float with the same pole up and if he then 
approached them with the opposite pole of a large bar magnet, 
the needles would arrange themselves in a regular pattern, which, 
for three, four or five needles, was a triangle, square or pentagon, 
but for larger numbers of needles consisted of concentric regular 
polygons. Similarly, Thomson suggested that the electrons would 
arrange themselves in a spherical shells. 

Thomson was able to account qualitatively for many atomic 
phenomena. For instance, on his model it is natural to expect a 
break in the atomic properties when a new shell of electrons is 
started and this is represented in the periodic behaviour of the 
atomic properties when we go through the periodic table of 
elements. Moreover, if the atomic spectra are assumed to be due 
to the eigen-vibrations of the electrons around their equilibrium 
positions, it is natural to expect elements in the same column of 
the periodic table to have similar spectra, as is found to be the 
case. Thomson's explanation of different valencies is completely 
analogous to the explanation given in the Bohr model: the near 
completion of a shell in an atom entails that the atom prefers to 
attach to it extra electrons, while the first electrons in a new shell 
are more easily removed. We do not want to discuss here other 
applications of Thomson's atom, but his own account of the 
various aspects of it which he gave in his Silliman Lectures well 
repays reading, and his concept of the "corpuscular temperature", 
which determines the kinetic energy of the electrons inside his 
atom and which, as he stresses, does not come to equilibrium with 
the temperature of the system of which the atoms form part, 
clearly resembles the concept of the nuclear temperature used in 
the statistical theory of nuclear reactions. 
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The real test for Thomson's a tom came with the experiments 
on the scattering of α-particles. Experiments on j8-ray scattering 
by Crowther (1910) seemed to be in agreement with the Thomson 
model, if one assumed that multiple scattering of the j?-ray by the 
electrons inside the atom could take place. However, the situation 
changed when experiments by Geiger and Marsden (1909) on the 
scattering of α-particles showed that a gold foil of thickness of 
about 4 . 1 0 " ^ cm produced scattering over 90° or more for one 
α-particle in 20,000. This was incompatible with Thomson's model 
of the atom and Rutherford (1911; reprinted in this volume on 
p . 108) deduced from this that the atom should consist of a heavy 
central mass, concentrated within a very small volume, surrounded 
by light masses of opposite charge, occupying the outer parts of 
the atom. We shall briefly discuss the considerations which led 
Rutherford to this conclusion. In the light of modem nuclear 
physics and elementary physics experiments, it is interesting to 
note that Rutherford emphasizes the importance of scattering 
experiments involving high-energy particles for the study of 
atomic structure. 

In comparing the predictions based upon Thomson's model 
with those based upon Rutherford's nuclear or planetary a tom we 
must first of all see what the theories predict about single scattering 
processes, then what the result is of multiple scattering processes 
and finally discuss why for α-particles one should expect multiple» 
scattering processes to be unlikely to occur. 

Let us consider the scattering of a particle of mass m and charge 
Z i e by a fixed charge (Fig. I I I . l ) . Let V be the velocity of 
m at infinity, and let ρ be the impact parameter, that is, the 
distance at which m would pass the fixed charge, if there were no 
forces acting between the two charges. Let π—20 be the scattering 
angle, that is, the angle over which m is deflected. If we are not 
interested in the details of the orbit (for such details see, for 
instance, ter Haar, 1961, chap. I), we can easily find how θ 
depends on p. To do this, we introduce polar coordinates with the 
fixed charge as origin (Fig. I I I . l ) . We now note, first of all that 
the angular momentum of w at a point Ρ is equal to ηΐΓ^φ, since 
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Ρ 
Γ 2,e 

F I G . III. 1. Rutherford scattering. 

γΦ is the transverse velocity, so that the law of conservation of 
angular momentum reads 

p.mV = mr^, (3.1) 

Consider now the motion of m along the axis of symmetry of 
the orbit, that is, in the x-direction. From Fig. III . l we see that 
the change in Hnear momentum in the x-direction is equal to 
2mFeos Θ. As the force acting on m is ΖΙΖ2^^/Γ^, the force in 
the x-direction is ZiZ2e^cos</>/r^, and from Newton's second 
law we have thus 

2mKcosö = - cos φ dt. (3.2) 

Using equation (3.1) to replace the integration over t to one 
over Φ, we have 

2mKcos0 = 2 
pV 

- cos φ άφ. 

or 

or COti0.E = ^ , 

(3.3) 

(3.4) 
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where θ^^ ( = π - 2 0 ) is the scattering angle, and where 

is the minimum distance a particle of mass m and charge Z j e can 
approach a charge (assuming the charges to have the 
same sign) if it is approaching head-on with a velocity V at 
infinity.! 

So far we have taken the charge Z2 e to be fixed. From classical 
scattering theory we know that this is only correct, if the mass Μ 
of this charge is infinite. If Μ is finite, the orbit we have con-
sidered is the orbit in the centre of mass system, and superposed 
upon it is the motign of the centre of mass itself. In classical 
mechanics one proves (see, for instance, ter Haar, 1961, chap. I) 
that the motion in the centre of mass system is the same as if the 
scattering centre were fixed and the scattered particle had a mass 
mM/(m + Af), the so-called reduced mass. Let us now investigate 
the relation between the angle θ in the centre of mass system and 
the angle 0' in the laboratory system corresponding to Θ, which is 
the angle observed experimentally. If Μ is at rest in the laboratory 
system and m moving at a speed V at infinity, the centre of mass 
velocity î ôm will be given by the equation 

while V is related to the speed V in the centre of mass system as 
follows 

Μ Μ 

Consider now Fig. III.2. From Fig. 111.2(b) we see that 0̂ ^ 
satisfies the equation (V" is the velocity of m in the laboratory 
system after the scattering). 

t W e note that our formulae remain unchanged, if the two charges have 
opposite sign; the only difference lies in Fig. IILl where the fixed charge lies 
at the interior rather than the exterior focus of the hyperbolic orbit. 
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V" 
t a n Ö L = " 

Fs in0. , 

sinÖ.e 

cosösj+(m/M)* 
(3.8) 

(a) 

\ M 

β. 

Centre of mass 
system 

V' m 

\ 
m'̂  

Laboratory 
system 

ib) 

F I G . IIL2. Scattering in the centre of mass and laboratory systems. 

We note that if m<^M, « 0,^, as we would have expected. 
If /n = Af, we see that although θ^^ and θ^^ differ, the scattering 
angle in the laboratory system can still vary from 0 to π just as 
the scattering angle in the centre of mass system. However, if 
mt> M,y/e see that although the scattering angle in the centre of 
mass system can become large, in the laboratory system the 
scattering angle will always be small. 

In the Thomson atom, the scattering is due to the corpuscles 
(electrons), while in the Rutherford atom, it is partly due to the 
electrons and partly due to the nucleus. In the case of ß-mys, we 
would not expect qualitative differences in the scattering charac-
teristics of the Thomson and Rutherford atoms, as the )S-rays are 
electrons. However, in the case of α-particle scattering, we could 
not expect scattering over large angles to take place, if the a tom 
had the structure postulated by Thomson and if the observed 
scattering angle were due to a single scattering process. Provided 
we can show that multiple scattering is unlikely, the α-particle 
scattering data and especially the occurrence of large scattering 
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angles prove the untenability of the Thomson atom. Rutherford 
did not identify the light charges with electrons, but mentioned 
that a positively charged nucleus might explain the high velocity 
of the α-particles emitted in radioactive decay processes. We may 
also mention at this point that Nagaoka (1904) had considered 
earlier the properties of a "Saturnian" atom, consisting of a 
central attracting mass surrounded by rings of rotating electrons 
and that Perrin (1901) had also discussed a similar model. 

Before considering multiple scattering, we should note that on 
the assumption of single-scattering of α-particles by a nucleus of 
charge Z j ^ , Rutherford could determine Z2 from Geiger and 
Marsden's data and found that Ζ2 was approximately one-half the 
atomic weight of the scattering atom, in agreement with Barkla's 
discovery (1911) that the number of electrons scattering X-rays 
was per a tom about one-half the atomic weight. 

Let us now consider multiple scattering. First of all, we must 
note that we may safely neglect the scattering due to the electrons 
as they will only produce a small correction to the scattering 
produced by the nucleus. We refer to Section 5 of Rutherford's 
paper on p . 117 for a discussion of this point. Next, let us 
determine the probability that a particle is scattered over an angle 
lying between fl^c and Θ^^-\-άθ^^, and let us neglect the difference 
between 0¡c and θ̂ ρ, that is, let us assume that M^m (in the 
actual experiments, M/m ä 30 to 50). From equation (3.4), we 
see that we can find this probability once we know the probabiHty 
that the scattered particle is incident on the target with an impact 
parameter lying between ρ and p+dp. If / is the number of 
incident particles to be scattered per unit area, the number of 
particles incident with such impact parameters will clearly be 
I.lnpdp. If η is the number of scattering nuclei per unit volume 
and t the thickness of the target, and A its area at right angles to 
the incident beam, the number dN of particles scattered through 
angles between θ^^ and θ^ο + αθ^^ will be 

dN =; lAtnlnpdp = ^nlAtnb^^^^^de,,. (3.9) 
sm ic/sc 
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We can find from equation (3.9) the differential cross-section 

άσ 
^ = IAt. 2π sin 0sc d9sc 

and we have 

the so-called Rutherford scattering formula. 

The n u m b e r / of all particles deflected through an angle greater 
than Öse is given by the equation 

/ = i π M m f e 2 c o t H ö s c ( 3 . 1 1 ) 

and we see that /decreases rapidly with increasing θ^^. This means 
that the average scattering angle <0sc> will be small. In fact, 
Rutherford (see p . 1 1 9 ) shows that the average scattering angle is 
3nblSR, where R is the radius of the atom which is about 10"® cm, 
while b for an α-particle of energy lOMeV and Ζ = 1 0 0 is of the 
order of 1 0 " ^ ^ to 1 0 " ^ ^ cm. The average scattering angle 0^ due 
to multiple scattering in a target of thickness t will be proportional 
to the square root of the number of scattering processes as follows: 

ö, = <Ösc>V(̂ '̂'̂ 0, ( 3 . 1 2 ) 

or e, = inbyj(nnt), ( 3 . 1 3 ) 

The probability /^multiple that the deflexion due to multiple 
scattering will be larger than θ̂ ο will be given by the Gaussian 
expression cxp(-e^jef), or from ( 3 . 1 3 ) 

e íc=-A^' í> 'n í lnp .u i t ip , e , ( 3 . 1 4 ) 

while from equation ( 3 . 1 1 ) we get for the probability /^single that 
the same angle is exceeded in a single scattering process 

Psi„g<. = ití>^«ícot4o,c. ( 3 . 1 5 ) 

Combining equations ( 3 . 1 4 ) and ( 3 . 1 5 ) and bearing in mind that 
for practically all events is small so that cot i ^ s c ^ 2/0̂ 0 we ñndf 

tThe numerical value on the right-hand side of equation (3.16) is not 
changed materially when 9sc becomes so large that our approximation becomes 
invalid. 
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64 

or p^„uip,e = e - ^ - ' / ^ - g i e . (3.17) 

From equation (3.15) we can estimate for any given value of θ^^ 
the magnitude of S i n g l e for the targets used by Geiger and 
Marsden. For large angles Öse? which are the crucial angles in the 
discussion, /^single bccomcs small. However, as soon as p^mgit 

becomes small, we see that /^multiple becomes very small indeed. 
For instance, values of 0-1 and 0Ό1 for /^single correspond to values 
of 0-0004 and less than 10"^° for /^^uuipie : the probability for 
multiple scattering leading to appreciable values of ö^c is com-
pletely negligible, as we wanted to show. 
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Bohr's Atom 

T H E experimental evidence in support of Rutherford's a tom was 
very extensive, but there were also several severe diflSculties. 
To see what those were, let us consider the simplest of all atoms, 
the hydrogen atom, consisting of a proton (the name proposed by 
Rutherford for the hydrogen nucleus in 1920) around which a 
single electron revolves. It was known that hydrogen produces a 
line spectrum and that the frequencies of the lines satisfy the 
relation 

1 1" 
v = Rc (4.1) 

where c is the velocity of light, /Zj and are integers, and R is 
the so-called Rydberg constant {R = 109 678 c m " ^). The question 
then arose how one could explain this spectrum on the basis of 
Rutherford's atom. Classically, one would expect that the 
frequencies of the various spectral lines would correspond to the 
characteristic frequencies of the motion of the charged con-
stituents of the atom. However, in the case of hydrogen this would 
lead to a continuous spectrum stretching over the whole range of 
wavelengths, as one can see as follows. According to classical 
electrodynamics (see, for instance, Panofsky and Phillips, 1955) an 
accelerated charge will radiate and thus lose energy. Hence the 
electron will slowly spiral into the proton. On the one hand, this 
means that in a volume of hydrogen gas there would be atoms 
with the electrons at many different distances from the proton, 
circling around the nucleus with different frequencies, and thus 
providing a continuous spectrum. On the other hand, on this 

34 
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picture it is difficult to understand why atoms are such stable 
entities as it looks as if they should be completely unstable until 
the electrons have come to rest inside the nucleus. One way out 
would be to abandon completely classical electrodynamics but, to 
quote Kramers and Hoist (1923): 

It could hardly be expected that physicists in general would be very 
willing to give up the conceptions of electrodynamics, even if its basis 
was being seriously damaged by Rutherford's atomic projectiles. 
Surmounted by its crowning glory—the Lorentz electron theory—^the 
classical electrodynamics stood at the beginning of the twentieth century 
a structure both solid and spacious, uniting in its construction nearly all 
the physical knowledge accumulated during the centuries, optics as well 
as electricity, thermodynamics as well as mechanics. With the collapse 
of such a structure one might well feel that physics had suddenly become 
homeless. 

The answer, however, was to be found in abandoning classical 
electrodynamics on the microscopic plane—as has been done 
by Planck and Einstein in their discussion of radiation 
phenomena.! 

Another difficulty with the Rutherford atom was, as was 
emphasized by Bohr in the first paper of his "great trilogy" 
(1913a, b, c; the first of these papers is reprinted in this volume 
on p . 132), that there is no natural length in the theory, as long 
as it is treated classically. This is in contrast to the Thomson atom, 
where the condition of stability of the corpuscle configurations 
introduces such a length. However, if one decides to invoke 
quantum theory, one has, apart from the mass m and charge e of 
the electron, also Planck's constant A, and from those three 
quantities one can by dimensional analysis construct the combina-
tion h^/me^, which is a length of the right order of magnitude 
(compare equation (4.7) below). 

Bohr had come to Manchester, joining Rutherford, in March 

t An interesting anecdote told by Sommerfeld (Sommerfeld and Bopp, 1951) 
may be mentioned here. In a discussion about atomic spectra with the spectro-
scopist Runge, Helmholtz is quoted as having said "Yes, the planets. How 
would that be? The planets . . . but no, it won't άοΓ (My italics, D.t .H.) 
Runge states that Helmholtz clearly thought of orbits of electrons around the 
nucleus, but saw that these orbits would not be stable. 
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1912 after a short and not very happy stay at the Cavendish 
Laboratory in Cambridge. According to Gamow (as told by 
Condon, 1962), Bohr had not hit it off with J. J. Thomson because 
he was critical of his model of the atom! During his stay at 
Manchester, Bohr had started to develop his ideas about ways and 
means to use the Rutherford atom to explain atomic spectra. 
In the introduction to a recent reprinting of Bohr's 1913 papers 
(Bohr, 1963) on the occasion of the fiftieth anniversary of the 
pubHcation of these papers, Rosenfeld has given a detailed account 
of how Bohr was led to his theory. From his account we learn 
that the final—and decisive—touches were not put to the papers 
until February/March 1913, when Bohr had been back in 
Copenhagen for about half a year. 

Although there are many interesting points in Bohr's second and 
third papers, in which he discusses heavier atoms and molecules, 
the first paper is by far the most important one and because of 
lack of space our discussion will be mainly restricted to this first 
part which is devoted to a discussion of the hydrogen atom. 
We have already mentioned how Bohr deduced from the fact that 
Rutherford's model did not contain a natural length that Planck's 
quantum of action should enter into the theory. From classical 
mechanics (see, for instance, ter Haar, 1961), it follows that in the 
hydrogen atom, where an electron of charge —e is bound to a 
nucleus of charge + e , t the binding energy of the electron £"5, the 
radius a of the orbit—which we assume to be circular for the sake 
of simplicity—as was done by Bohr in most of his discussions— 
and the frequency ω of the electron in its orbit are related by the 
equations} 

£ . 4 α ' 

t It is interesting to note that Bohr states "general evidence indicates that 
an atom of hydrogen consists simply of a single electron rotating round a 
positive nucleus of charge e". From the context, it is clear that this result 
had only just become available when Bohr was writing his paper. 

ÍNote that Eh, which is denoted by Bohr simply by E, is the binding 
energy; the energy of the electron which is negative in a bound state will thus 
be equal -Eb. 
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2 £ * 

Equation (4.2) follows easily for circular orbits from the fact that 
(i) the potential energy U is —e^ja and (ii) the kinetic energy ^ is equal 
to —it/ by virtue of the virial theorem. Equation (4.3) combined with 
equation (4.2) expresses Kepler's third law relating the period in a 
Kepler orbit to its semi-major axis. It follows easily from the fact that 
1/πα2(2πω)2 ^ ^ = E\,. 

Consider now an electron which is brought from infinity to an 
orbit with frequency ω. As its frequency is zero at infinity, Bohr 
suggested that the energy lost in binding the electron would be 
emitted in the form of τ energy quanta Λν with ν = | ω . We get 
thus the relation 

£b = τΛΙω, (4.4) 

which together with equations (4.2) and (4.3) leads to the relations 

^ = ^ 3 1 3 - . (4.6) 

As Bohr states himself, the basic assumptions involved, if we 
now identify the states with the parameters given by equations (4.5) 
to (4.7) as stationary states of the hydrogen atom, are: (a) that the 
dynamical equilibrium of the systems in the stationary states can 
be discussed by help of ordinary mechanics, while the passing of 
the systems between different stationary states cannot be treated on 
that basis (my italics, D. t. H.), and (b) that the latter process is 
followed by a homogeneous (Bohr's italics) radiation, for which the 
relation between the frequency and the amount of energy is the 
one given by Planck's theory. We shall return to a discussion of 
the various main points of Bohr's paper, but first we shall discuss 
a few more consequences. 
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which corresponds both qualitatively and quantitatively with 
relation (4.1). Bohr suggested at the same time that the spectrum 
of the helium ion He"*" would show a similar dependence but with 
the factor in front of the bracket on the right-hand side of 
equation (4.9) four times as large and that this spectrum was the 
one observed by Fowler in a mixture of hydrogen and helium and 
by Pickering in stellar spectra. This prediction was soon after-
wards confirmed by Evans and the slight difference between the 
coefficients in front of the brackets in equation (4.9) and one-fourth 
of the analogous constant in the formula for the He -lines 
strengthened the identification as the m occurring in that constant 
should be the reduced mass mMI(m + M) , rather than the electronic 
mass and the nuclear mass Μ is four times as heavy in the case of 
helium as it is in the case of hydrogen. 

In view of the importance of the so-called correspondence 
principle (see Chapter VI), which states that quantum systems in 
the Hmit of large quantum numbers will behave as classical 
systems, it is of interest to see how Bohr found a different way to 
derive equation (4.4). We have seen that equation (4.9) represents 
the experimental data on the hydrogen spectrum and this is a 
direct consequence of equation (4.5) which was derived by 
combining equations (4.3) and (4.4). It is immaterial how 
equation (4.4) is derived. 

Bohr first notes that in writing down equation (4.8) we assume 
that only one quantum is emitted during the transition. Secondly, 
he notes that in the region of low frequencies the resuhs obtained 

Let us consider now the transition from a state with energy 
corresponding to τ = to a state with energy Ε2 corresponding 
to τ = T 2 ( < t i ) . If we assume that the energy difference E2—E1 is 
emitted in the form of a single light quantum of frequency v, 
we have 

£ ι - £ 2 = Λν, (4.8) 

or v = — 3 - (4.9) 



BOHR'S ATOM 39 

from quantum theoretical considerations should be the same as 
those following from classical considerations (compare Chapter I, 
where expression (1.48) goes over into the classical expression 
(1.25) as Av/fcr-^O). Let us now assume that instead of relation 
(4.4) we have 

£ ^ = / ( τ ) Α ω (4.10) 

where / ( τ ) is a so far undetermined function of the quantum 
number τ. Combining equation (4.10) with equation (4.3) and 
using equation (4.8), we find that / ( τ ) must be proportional to 
τ : / ( τ ) = ^ τ . Consider now the transition from the state with 
τ = Ν to the state with τ = Ν—I, From equations (4.3), (4.8), 
(4.10), and the relation / ( τ ) = Κτ we get for the frequency ν of the 
radiation emitted 

n'me^ 2N-1 

while we get for the (classical) frequency of the electron in the 
stationary state corresponding tox = Ν 

In the limit as N-^ co, we must have -> ν, and, therefore, Κ 
must be equal to J, which means that we have rederived equation 
(4.4). 

From equations (4.6) and (4.7) we find for the angular momen-
tum Μ of the electron the equation 

Μ = ηια\2πω) = xh, (4.13) 

where ft is Dirac's constant (=Α/2π). Equation (4.13) expresses 
the quantization of angular momentum. 

In Bohr's second paper (1913b) he uses equation (4.13) as a 
starting point. Indeed, equations (4.5) to (4.7) follow directly 
from equation (4.13) combined with equations (4.2) and (4.3). 

If Bohr's ideas, and especially equation (4.8), are correct, one 
should expect that controlled electron impact would produce 
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controlled excitation of atoms. In fact, this was found experi-
mentally by Franck and Hertz (1914a, b ; the second paper is 
reprinted in this volume on p . 160) who showed that the mercury 
resonance line with a wavelength of 2536 Ä could be produced 
when mercury atoms were excited by electrons of the proper 
energy, and thus gave a direct experimental verification of Bohr's 
postulate (4.8). 

Let us now discuss in a little more detail the many points on 
which Bohr departs from classical considerations. In doing this, 
we shall follow Whittaker's exposition (1954). The main points of 
Bohr's theory are: 

(i) Atoms produce spectral lines one at a time and are not 
responsible for the whole spectrum simultaneously. 

(ii) A single electron is responsible for the production of a 
spectral line. 

(iii) The Rutherford nuclear atom provides a satisfactory basis 
for exact calculations of the frequencies of the spectrum. 

(iv) The production of spectra is a quantum process. 
(v) A given atom may exist in different stationary states; in such 

states the atom will not radiate. 
(vi) The angular momentum is quantized in units of h. 
(vii) If a spectral line is produced, two stationary states are 

involved and the spectral terms can be identified with the energies 
of the stationary states. 

(viii) In both emission and absorption one light quantum is 
involved and its frequency is determined by the Planck-Einstein 
relation (4.8). 

Finally; (ix) It is impossible to visualize or explain classically the 
behaviour of the atom when the transition takes place. 

Many of these features had been envisaged by earlier workers. 
For instance, Conway (1907) had suggested that a single atom 
(and probably a single electron) will produce one spectral line at 
a time and will do so when it is in an excited state which it will 
occupy sufficiently long to emit a fairly long wave train. Nicholson 
in a long series of papers (1911a, b ; 1912a, b, c) had tried to 
explain atomic spectra—with some success which was, however. 
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as we know now, fortuitous—on the basis of the Rutherford atom, 
invoking the quantum of action, and suggesting that different 
spectral lines are produced by the atom in different states which 
are characterized by discrete values of energy and of angular 
momentum, and he even hinted—without fully grasping what he 
was doing—that two states are involved in the production of a 
spectral line.t The quantization of angular momentum had been 
discovered independently by Ehrenfest (1913) in a paper discussing 
the quantum theory of rotation.} From this it is clear—and it is 
also clear from Rosenfeld's account of how Bohr developed his 
ideas—that various ideas relevant to Bohr's theory were in the air, 
but it needed Bohr's genius to put them together and to add to 
them the essential features of the essential impossibility of 
describing the emission process and of the stationary states in 
which the atom will not emit radiation. This combination of 
those features of the old theory which can be salvaged and those 
new concepts which are needed to make the theory give results in 
accordance with experimental facts is characteristic of Bohr's 
work. 

We have noted in earlier chapters how long it took the scientific 
world to appreciate the importance of Planck's work. It is 
interesting to note the changed atmosphere in 1913. Although 
Bohr's theory incorporated ideas which were fully as revolutionary 
as Planck's introduction of energy quantization, the response was 
much more positive. It is true that neither J. J. Thomson nor 
Lorentz accepted the theory immediately and that Lord Rayleigh 
did not commit himself on the grounds that people over 60 should 
not judge new developments. However, Sommerfeld (Sommerfeld 
and Bopp, 1951) recounts how the spectroscopist Paschen com-
mented on Bohr's paper as its being possibly the most important 
paper in physics for the next decades, while Rosenfeld (1963) tells 

t l feel that Rosenfeld (1963) plays down Nicholson's work too much. 
Bohr's imaginative step in renouncing a classical description of the emission 
process so far exceeds the work of any of his predecessors that it is easy to 
underestimate their contributions. 

t While Bohr's first paper was submitted in April and published in July, 
Ehrenfest's paper was submitted in May and published in June. 
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about the favourable reactions of Hevesy, Oseen, and Sommerfeld 
himself, and also of Einstein's reaction when he heard that Evans' 
experiments had confirmed Bohr's interpretation of the spectrum 
found by Pickering as being due to ionized helium: "I t is one of 
the greatest discoveries." Perhaps we may conclude this chapter 
by once more quoting Einstein (1951). After noting the serious 
contradictions between radiative phenomena and classical 
dynamics, Einstein continues: 

All my attempts to adapt the theoretical foundation of physics to this 
new type of knowledge failed completely. It was as if the ground had 
been pulled out from under one, with no firm foundation to be seen 
anywhere, upon which one could have built. That this insecure and 
contradictory foundation was sufficient to enable a man of Bohr's 
unique instinct and tact to discover the major laws of the spectral 
lines . . . appeared to me like a miracle—and appears to me as a 
miracle even today. This is the highest form of musicality in the sphere 
of thought. 



C H A P T E R V 

Atomic Spectra in the 
Old Quantum Theory 

BETWEEN the appearance of Bohr's great trilogy in 1913 and the 
advent of wave mechanics in 1925, a large number of papers 
appeared developing Bohr's ideas into an impressive theory of 
atomic phenomena. It was a collective effort and the names of the 
physicists contributing to it make up an imposing roll-call: Bohr, 
Bom, Klein, Rosseland, Kramers, Pauli, Sommerfeld, Planck, 
Einstein, Ehrenfest, Epstein, Debye, Schwarzschild, W i l s o n . . . . 

In the present chapter we shall discuss the theory of atomic 
spectra, which was first of all based upon the following two 
postulates (see points (v), (vii), and (viii) in the previous chapter) : t 

I. That an atomic system can, and can only, exist permanently 
in a certain series of states corresponding to a discontinuous 
series of values for its energy, and that consequently any change 
of the energy of the system, including emission and absorption 
of electromagnetic radiation, must take place by a complete 
transition between two such states. These states will be denoted 
as the "stationary states" of the system. 

II. That the radiation absorbed or emitted during a transition 
between two stationary states is "unifrequentic" and possesses a 
frequency v, given by the relation 

= ftv, (5.1) 

t We quote here verbatim from the first of the three comprehensive survey 
papers by Bohr (1918a, b, 1922a), which were published in the Proceedings of 
the Danish Academy. 

43 
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where h is Planck's constant and where E' and E" are the values 
of the energy in the two states under consideration. 

These postulates are not by themselves sufficient to determine 
the stationary states. We saw in the previous chapter how Bohr 
derived an expression for the energies of the stationary states of 
the hydrogen atom by requiring that the angular momentum is 
quantized. The question arises then whether this requirement is 
sufficient and whether it is always the correct one. First of all, 
we must emphasize the inner paradox which is inherent to all 
these considerations. We are trying to find principles and rules 
to determine the stationary orbits, that is, those classical orbits 
which are quantum-mechanically allowed and which at the same 
time behave in a most unclassical manner by not changing their 
energy through the emission of electromagnetic radiation. One 
should not consider such rules as the adiabatic hypothesis (see 
below) or the correspondence principle as attempts to make 
classical and quantum theory compatible; rather, they were 
attempts to find a way towards a completely quantum-mechanical 
formulation, such as the one found by Schrödinger and Heisen-
berg. A similar question arises in connexion with black-body 
radiation. We have seen how quantum theory can account for the 
energy density in the radiation field. On the other hand, purely 
classical arguments (compare Chapter I) lead to both Wien's 
displacement law (1.1) and the Stefan-Boltzmann law (1.6). 
The clue to a solution of this apparent paradox, as well as an 
indication of the path to be followed to find the stationary orbits 
can be found in our discussion in Chapter I.f The point is that 
just as the modes of the electromagnetic field are characterized by 
a set of integers (see equation (1.7)), so are the stationary states. 
In the latter case, the integers are called quantum numbers. If we 
now subject the system to an (infinitely) slow change—an adiabatic 
change—it must stay in the same stationary state—or rather it 
must go from its original stationary state to a new state, which is a 

t The most comprehensive discussion of this point can probably be found 
in a paper by Ehrenfest (1923; see also Bohr, 1918a, b), where references to 
earlier literature can be found. 
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Stationary one in the new conditions, but this change must be a 
continuous, smooth one.f This means that the quantum numbers 
characterizing the new stationary state must be the same as the 
ones characterizing the old one. To find the quantum conditions, 
that is, the relations from which the stationary orbits can be 
derived, we must thus find quantities which do not change when 
the system is subjected to adiabatic changes. Such quantities are 
called adiabatic invariants. If we are dealing with so-called 
multiply periodic systems, that is systems where each of the 
coordinates returns to its original value or is an angular variable, 
these adiabatic invariants are the action variables J^. of classical 
mechanics. 

Let us briefly recapitulate what classical mechanics tell us about action 
variables (see, for instance. Bom, 1927, or ter Haar, 1961). The behaviour 
of a classical system of s degrees of freedom is completely determined if 
we know how its s generalized coordinates qk, which are s parameters 
fully defining the state of the system, depend on time. If ^ is the kinetic 
energy of the system and U its potential energy, the equations of motion 
for the qk can be written in the form 

d 

where JSf is the Lagrangian of the system, 

Se = ^-U. (5.3) 

Equations (5.2) are s second-order differential equations for the ^jk. 
It is convenient to go over to a set of Is first-order differential equations 
by introducing the generalized momenta, pk, through the equations 

The equations of motion now become the canonical or Hamiltonian 
equation of motion: 

where Jif is the Hamiltonian of the system, 

^ = Σpkqk-^, (5.6) 

tThe rate of change of the condition must be so slow that the relevant 
frequencies are all small compared to the frequencies involved in transitions 
between stationary states. 
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which, in many cases, is just the total energy, ^Λ-ϋ, expressed in terms 
of the pk and qk. 

Equations (5.5) are often difficult to solve, and we can use the following 
method to simplify them. If we introduce a function S{qk\o-k) of the qk 
and of s new variables α*, and if we perform a transformation from the 
Pk and qk to a new set of variables a* and ßk through the equations 

dS „ dS 

the equations of motion are again in canonical form, 

= ^'--e^k^ (^•«> 

where is the Hamiltonian expressed in terms of the α* and ßk. The 
function S generating the transformation (5.7) is now chosen in such a 
way that does not contain the ßk. In that case, it follows from 
equation (5.8) that the ctk are constants and the ßk linear functions of 
the time. 

Consider now a one-dimensional case, let the motion be periodic with 
period τ, and let the solution of the equation for β be written in the form 

ß = At-to). (5.9) 

The periodicity of the motion can be expressed by the equationf 

^ + y T ) = ^ ) . (5.10) 

Consider now a further transformation from α and β to new variables 
J and w through a generating function 5 ' = Jßlyr. From the equivalent 
of equations (5.7), we find that 

/=ayT and w = β/γτ, (5.11) 

while equation (5.10) becomes 

q(w+l)=q(w). (5.12) 

As the two transformations together leave the equations of motion 
invariant, it can be generated by a function 5(^,/) , which connects ρ and q 
with / and w as follows 

dS dS 

t W e exclude here the case where ^ is an angle and where the periodic 
motion is a rotation. In that case, we have instead of equation (5.10) the 
relation q(ß-\-yT) = q(ß)-\-2n. The further analysis is completely analogous to 
the one given here and is left to the reader. 
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From these equations it follows that 

d r d rds rdw r 
JjJPdq = Jj^Yqdq = ^j^dq^jdw=h (5.14) 

where ^ indicates integration over one period. From equation (5.14) we 
get 

J=§pdq. (5.15) 

As / and w have, respectively, the dimensions of an angular momentum 
or action and of an angle, they are called the action and angle variables. 

If we are dealing with systems with more than one degree of freedom, 
and if the Hamilton-Jacobi equations can be solved by separation of 
variables, while the system is periodic in each of the qk, the action 
variables for the system are given by the equation 

Jk = §Pkdqk, (5.16) 

where now | indicates integration over the period corresponding to qk. 

It was shown by Burgers (1917, 1918) that the action variables 
given by equation (5.16) are, indeed, adiabatic invariants. We 
shall not give the proof here, but refer the reader to the literature 
(for instance, ter Haar, 1961, § 6.3; Tomonaga, 1962, § 19). 

As the Jk are adiabatic invariants, they can be used to determine 
the stationary orbits. This is done through the Sommerfeld-
Wilson quantization rules (Sommerfeld, 1915a, b , 1916; Wilson, 
1915): 

Jk = hkdqk = n,K (5.17) 

where the n^, the quantum numbers, are integers. 
As a first application of the quantum conditions (5.17), let us 

consider the hydrogen atom. The in this case are the spherical 
polars, r, Θ, and φ, the Lagrangian is 

j$f = im(r^ + r^d^ + sin^ θφ^)+-, (5.18) 

the Pk are given by the equations 

Pr = mr, (5.19) 

Pe = mr^d, (5.20) 

Ρφ=^γητ^ύη^Θφ, (5.21) 
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and the Hamiltonian is 

2m\' r^sm^ Θ; 

e 

r 
(5.22) 

From equation (5.22) and the equation of motion it follows that 
Ρφ is a constant. If we transform from spherical polars to 
Cartesian coordinates with the z-axis along the polar axis, we see 
that Ρφ is the z-component of the angular momentum, M^. 
From equation (5.17) it now follows that 

ηφΗ = §Ρφάφ = 2πρφ, (5.23) 

or M^ = ρφ = Πφ h, (5.24) 

showing the quantization of the z-component of the angular 
momentum; is usually denoted by m, and is called the magnetic 
quantum number (see below for the reason for this terminology). 

Consider now the square of the angular momentum, M^, 
We find 

M2 = ( [ r A m f ] . [ r A m r ] ) = pJ+ sin^e' (5.25) 

and from the equations of motion (5.5) we find that is a 
constant of motion. From equation (5.17), we now obtain 

nßh = Jq = 2 
Γθ2 

de. (5.26) 

where 0^ and 02 are the values of θ for which the radical vanishes. 
From equations (5.26) and (5.24) we obtain 

M - | M J = n,ft, (5.27) 

or M = (na + n )̂fi. (5.28) 

The sum of and is usually denoted by k and is called the 
auxiliary or azimuthal quantum number. The orbital quantum 
number I of wave mechanics takes the place of the azimuthal 
quantum number in the old quantum theory. A rough comparison 
can be made, if we use the relation 1 = k - l . 
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fmln L 

2mE + 
2me^ 

dr (5.29) 

where Ε is the energy of the electron, and r„¡n and r^^^^, are the 
zeroes of the radical. In Fig. V.l we have sketched the potential 
energy, —e^/r, and as functions of r, and in Fig. V.2 we have 
sketched p^ as function of r. The quantization rule (5.17) thus 

F I G . V . l . The potential energy and pr^ as functions of r for the 
hydrogen atom. 

expresses that the area enclosed by the curve in Fig. V.2 equals an 
integral multiple of Planck's constant. The fact that Λ is a 
measure for the areas in the phase-plane is important in the 
discussion of a priori probabilities in statistical mechanics (see, for 
instance, ter Haar, 1954, chap. I l l ; for early discussions compare 
Debye's Wolfskehl lecture (Planck et al., 1914), Bohr, 1918a, b ; 

Using equations (5.22), (5.25) and (5.17), we get for the last 
quantum condition 
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Pr 

•min 

F I G . V.2 . The radial momentum pr as function of r for the hydrogen 
atom. 

Ehrenfest, 1923). From equation (5.29) we get 

η , Λ = - 2 π Μ + πβ2 

or, using equation (5.28), 

2 m \ 

—e} 

me" 

(5.30) 

(5.31) 
2 Α > , + η , + η ψ ) ^ ' 

which agrees with equation (4.5), if we identify «ψ with 

the principal quantum number η (denoted by τ in the preceding 

chapter). 

F I G . V.3. The contours in the complex r-plane involved in the 
evaluation of Λ . 

Equations (5.27) and (5.30) can be derived by elementary integration; 
the integral in (5.29) can be evaluated by introducing a new variable 
u [=í2r—rmin—rmax)/(^max—rmin)]. A more elegant method, however, 
is the following one, which is due to Bom (1927). We change the integral 
over r to an integral in the complex plane (see Fig. V.3). As the integrand 
is a two-valued function, we must thus introduce a cut in the r-plane 
between the two branch points rmin and rmax. In Fig. V.3 we have taken 
the branches such that the positive (negative) square root is taken above 
(below) the real axis. We then have 

Λ = φ Prdr, (5.32) 
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By distorting Ci into C 2 + C 3 , we can evaluate the integral by Cauchy's 
theorem of residues, or 

Jr = Ini (residue at r = 0+residue at r = 00), (5.33) 

from which equation (5.30) follows. 
Equation (5.27) can be derived in a similar way, but the easiest way is 

probably by noting that if we split the kinetic energy once into three 
contributions corresponding to motion in the r-, and <^-directions, 
respectively, and once into three contributions corresponding to the radial 
motion, the transverse motion in the orbital plane, and the motion 
perpendicular to the orbital plane (which does not contribute to the 
kinetic energy), respectively, we have 

ΡΓΓ+/7θΟ+/?φί? =/?rr+/?;f/ + 0, (5.34) 

where χ is an angle determining the position of the electron in its orbital 
plane. The quantity is clearly the total angular momentum Λ/, so that 

ρ^θ==Μ -ρ^φ. (5.35) 

As χ and φ both increase by 2π when θ goes through one period, 
equation (5.27) follows. 

The stationary orbits of the hydrogen atom are determined by 

the values of /i,, and n^—or «, k and m. We have seen that η 

determines the energy, k the total angular momentum, and m its 

z-component. In general, the orbit will be an ellipse. As r̂ i„ and 

''max arc the solutions of the equation 

ImEr^-^lme^r-M'' = 0, (5.36) 

we find for the semi-major axis a [=K''inin + ''max)] 

which is the same as equation (4.7). 

The eccentricity ε of the orbit is given by the equation 

ε = "j^í^^^Zll^^ (5.38) 

''max ''min 
and the semi-minor axis b by the equation 

b = . V(l-e^) = V ( r„ ,„r™J = - . n k . (5.39) 
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F I G . V.4. The As, Ap, Ad, and 4/orbits of the hydrogen atom. 

Let us now consider the spectrum of an alkali metal atom, such 
as sodium. The sodium atom consists of a nucleus of charge 
4-11^ surrounded by 11 electrons. If we deduce from the experi-
mental data on the sodium spectrum, which bears a strong 
resemblance to the hydrogen spectrum (compare equation (5.42)) 
that a single electron is responsible for the spectrum, we must 
consider the motion of one electron in the combined field of the 
nucleus and the 10 other electrons. A theoretical justification is 
afforded by the shell model of the atom which we shall brieñy 

As n—k — fif, k varies from 1 to «, the value fc = 0 being 
excluded as it corresponds to a linear orbit, where the electron 
would move through the nucleus. This variation corresponds to 
the limits 0 and n — \ for /. As η determines both the energy and 
the semi-major axis, orbits with the same n, but different k will 
have the same major axis, but different eccentricities. The orbits 
are characterized by nk, and k= 1,2,3,. . . ( / = 0,1,2, . . . ) corre-
sponds to S', p', d-, ... orbits (for an explanation of this nomen-
clature, see the discussion of the alkali spectra below); for 
instance, 3p corresponds to an orbit with « = 3,fc = 2 ( / = l ) , and 
so on. In Fig. V.4 we have sketched the 4^, 4p, Ad and 4 /orbi t s . 
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n,h = 2 
r m i n L 

2mE-2mU(r)- dr. (5.40) 

As we do not know the explicit form of U(r), we cannot evaluate 
the integral. It is, however, possible to reach some general 
conclusions from equation (5.40). To do this, we consider 
Fig. V.5. In this figure, we have drawn both for the case (a) 
when U(r) = —e^/r, and for the case (b) when U(r) has the actual 

F I G . V.5. The dependence of (i) pr and (ii) pr on r for the cases 
(a) where U(r) = ~e^/r and (b) where U(r) is the potential felt by 

the optical electron in a sodium atom. 

discuss later in this chapter. As there is no preferred direction, 
we may assume that the field acting upon the electron is 
spherically symmetric. The potential energy, U(r), will far from 
the nucleus be simply -e^/r, as the 10 electrons will screen out 
all but YY of the nuclear charge. Close to the nucleus, however, 
the influence of the other electrons will be negligible, and U(r) will 
behave as — lle^/r. If we apply to the motion of the electron the 
quantization rules (5.17) and use spherical polars to describe the 
motion, we can use the results (5.24) and (5.28) as those did not 
depend on the specific shape of the potential energy. However, 
instead of equation (5.29) we now have 



54 THE OLD QUANTUM THEORY 

( n , - a ) Ä = 2 
r m i n L 

2me^ 
dr, (5.41) 

and following step by step the argument which led from equation 
(5.29) to equation (5.31), we find for the energy of the electron in 
the stationary orbit characterized by n^, Πβ and Πφ 

me 

2f i2 (n_a )2 
(5.42) 

where again η = η^+Πφ+Πφ. The quantity α is called the quantum 

defect, and we see that it is a measure for the deviation of the 
stationary orbit from the corresponding hydrogen orbit, or, put 
differently, a measure for the penetration of the orbit into the 
electron shell formed by the other electrons and surrounding the 
nucleus. We would expect that α will depend strongly on the 
azimuthal quantum number, because if Μ varies, so does the 
centrifugal force and thus the effective potential. Put differently, 
we would expect that the penetration of an orbit will increase with 
decreasing k, as can be seen, for instance, from Fig. V.4. The 
quantity n-0L = n* is called the effective quantum number. 
We note, by the way, that we can also interpret equation (5.42) by 
writing e'^/n*^ a sZ*^ e^/n^ and saying that because of penetration, 
the effective charge acting upon the electron is larger than the 
charge it feels far away from the nucleus. 

Equation (5.42) represents the energy levels of the sodium atom 
quite well. In fact, the sodium spectrum consists of a number of 
series of lines, the frequencies of which satisfy the following 
equation [compare equation (4.1)]: 

v = Rc 
1 1 

(5.43) 

shape occurring in the sodium atom. We have also drawn the 
corresponding curves in the p^—r diagram. Equation (5.40) tells 
us that the area enclosed by the curve (b) in Fig. V.5(ii) is equal 
to A. If the shaded area between the curves (a) and (b) is equal to 
aA, we have 
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The so-called principal series corresponded to 

ni = 3, a i = 1 4 ; «2 = 3,4, . . . , α 2 « 0 · 9 ; (5.44) 

«2 = 4 ,5 , . . . , α 2 « 1 · 4 ; (5.45) 

the so-called sharp series to 

Ml = 3, α ι = 0 · 9 ; 

the so-called diffuse series to 

„ 1 = 3, α ι = 0 · 9 ; «2 = 3,4, . . . , α 2 « 0 · 0 1 ; (5.46) 

and the so-called Bergmann or fundamental series to 

n, = 3, a i = 0-01; «2 = 4 ,5 0C2 « 0-002. (5.47) 

This suggests a term-diagram or Grotrian diagram of the form 
given in Fig. V.6. In this diagram we have put the energies given 
by the equation (5.42) and indicated the appropriate values of «. 
We have also connected those energies which gave rise to the 
spectral series (5.44)-(5.47). It turns out that the energies in the 

F I G . V.6. Grotrian diagram for sodium. 
OQT 
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column marked " i " correspond to nl orbits, those in the column 
marked to n2 orbits, in the "rf" column to «3 orbits, and in 
the column to n4 orbits. The nomenclature s, p, d, f was 
introduced because these levels led to the fundamental, sharp, 

diffuse, and fundamental series. The fact that only energy-levels 

in adjacent columns combine is due to so-called selection rules, one 
of which states that in a transition k must either increase or 
decrease by unity. We shall discuss selection rules in the next 
chapter. From equations (5.44)-(5.47) we notice that, indeed, α 
decreases with increasing k, being, respectively, 1-4, 0-9, 0-01 and 
0-002 for Ä:= 1,2,3 and 4. 

Before discussing the shell model of the atom, we shall briefly 
discuss the behaviour of an atom in a magnetic field. Consider 
the case of a uniform magnetic field H. We know from classical 
mechanics (for instance, ter Haar, 1961) that we can take the 
influence of a magnetic field into account by changing in the 
kinetic energy to (p—eA/c)^ where A is the vector potential. 
In the case of a uniform field, we can choose A to be of the form 

A = i [ H A r ] , (5.48) 

and if the field is sufficiently weak so that we may neglect terms 
quadratic in H, we get instead of the equivalent of equation (5.22) 
for the Hamiltonian the equation 

where Η is the absolute magnitude of H . As does still not 
contain φ, ρ φ is again a constant of motion, and equation (5.24) 
again holds. If we may treat the term involving / Í as a small 
perturbation, we see that the energy of the stationary states is 
changed by an amount Δ£' given by the equation 

Δ £ = -^ΠφΗ = -ηφμΒΗ, (5.50) 
2mc ^ ^ 
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where μβ is the so-called Bohr magneton, 

From equation (5.50) we see the reason why Πφ is called the 
magnetic quantum number. The selection rule for Πφ is that it can 
either increase by unity, or decrease by unity, or remain unchanged 
in a transition. If we are, therefore, comparing the frequency of 
a spectral line for the case where there is no magnetic field with 
the corresponding line for the case where there is a magnetic field 
present, we find that the line is split in a triplet, the central line 
of which is undisplaced, while the two other lines are at a distance 
(in frequency) H/h to the left and right of it. This is the normal 
Zeeman triplet, for which Lorentz gave a simple classical explana-
tion in terms of a precession of the orbital plane (see, for instance, 
Hindmarsh, 1966). 

Let us now conclude this chapter by considering the shell model 
of the atom. In Fig. V.7 we have given the periodic system of 
elements up to xenon. In this figure lines connect elements with 
similar chemical properties in different periods. The first six 
periods contain, respectively, 2, 8, 8, 18, 18 and 32 elements. 
Although Bohr (1921, 1922b) was able to explain the structure of 
the periodic table, starting from the regularities of the atomic 
spectra, which indicate that only a few of the electrons in the atom 
are responsible for the spectral lines and from the similarities 
displayed by the elements connected by lines in Fig. V.7, a 
satisfactory explanation requires the use of PauU's exclusion 
principle (Pauli, 1925b, reprinted in this volume on p . 184). 
We shall brieñy discuss how Pauli was led to this principle (for a 
more detailed discussion of the history of the Pauli principle see 
Whittaker, 1954, chap. IV, or PauU, 1946). The Bohr theory was 
not able to explain the doublet structure of the alkali atoms, which 
indicated that there were twice as many quantum states as the 
Bohr theory predicted. Neither could the theory explain the 
anomalous Zeeman effect. It was thought for a long time that the 
doublet was due to the existence of two alternative states of the 
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J 9 K -

yeoca-

-37 Rb^ 

-38 Sr^ 

29 C u -

O Z n -

Υ3Ι Ga-

,52 Ge-

3 A s -

4 S e -

5 B r -

6 Kr -

' 21 Sc 39 Y ' 21 Sc 39 Y 

22 Ti 40 Zr 22 Ti 40 Zr 

23 V 41 Nb 23 V 41 Nb 

24 Cr 42 Mo 24 Cr 42 Mo 

25 Μη 43 Tc 25 Μη 43 Tc 

26 Fe 4 4 Ru 26 Fe 4 4 Ru 

27 Co 45 Rh 27 Co 45 Rh 

\ 28 Ni 46 Pd \ 28 Ni 46 Pd 

-47 A g , 

- 48 Cdx 

- 4 9 I n \ 

- 5 0 S n \ 

-51 S b \ 

-52 Te\ 

- 5 3 IN 

- 5 4 Xe. 

F I G . V.7. The periodic system of elements up to xenon. 

quantum theoretical property of the electron, which Pauli called 
"a two-valuedness not describable classically". The final explana-
tion of this two-valuedness and thus of the doublet structure of the 
alkali spectra was given by Uhlenbeck and Goudsmit (1926; this 
paper is reprinted in Hindmarsh, 1966) by their suggestion that 
the electron possesses an intrinsic angular momentum (spin) and 

atom core, but Pauli (1925a) showed that this would lead to a 
dependence of the Zeeman effect on atomic number which was not 
observed, and he suggested that the doublet was due to a new 
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a magnetic moment. In trying to explain the periodic table of 
elements, Bohr assigned to groups of electrons with given values 
of the quantum numbers η and / numbers of electrons which 
varied with the degree of filling of the shells (see Table 1 of Pauli, 
1925b, reprinted on p . 194 of this volume), but Stoner (1924) 
introducing the extra quantum number which was earlier used to 
characterize X-ray spectra (and which in modern terms is / ± i or j) 
suggested that each w,y-state could be occupied by 2 j + 1 electrons 
(see Table 2 of Pauli, 1925b, reprinted on p . 194 of this volume). 
He also suggested that for a given value of «, the number of energy 
levels of a single electron in the alkali metal spectra in an external 
magnetic field is equal to the number of electrons in the closed 
shell of the inert gas which correspond to this value of w. Pauli 
then suggested that in strong magnetic fields, where we can assign 
to each electron four quantum numbers, AI, /, 7 , and a magnetic 
quantum number, m, only one electron can exist with a given set 
of quantum numbers. Using Bohr's principle of permanence of 
quantum numbers, Pauli suggested that the number of electrons 
assigned to a certain subgroup would remain the same also in 
weak or vanishing fields. We refer to his paper, reprinted in this 
volume, for Pauli's arguments based on experimental data in 
favour of his proposal. To construct the periodic system gradually, 
we shall use instead of «, and m the equivalent set n, /, w, and 

(the spin quantum number), where h is the z-component of 
the electron spin and where m^= + i or Moreover, we use 
the fact that for a given value of «, / can take on the values 0 , 1 , 
w — 1 , that for a given value of /, m can take on the values —/, 
- / + 1 , / - 1 , /, while can be either -f i or We can now 
construct the periodic table (compare also Pauli's discussion in 
PauH, 1925b). 

To fix our ideas, let us consider the sodium atom and let us 
build it up by successively putting the eleven electrons in the field 
of the nucleus. The first electron will go into a \s orbit, and so 
will the second electron. Their quantum numbers will be w = 1, 
/ = 0, w = 0, and = + i and — | . The third electron cannot be 
accommodated in an « = 1 orbit, but must go into an η = 2 orbit. 
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THE ELECTRONIC STRUCTURE OF THE ELEMENTS UP TO XENON 

Element Is 2J 2/> 3i 3p 3d 4s 4íí 4 / 5s 5/> 

1 Η 1 

2 He 2 

3 Li 2 1 
4 Be 2 2 
5 B 2 2 1 
6 C 2 2 2 
7 N 2 2 3 
8 0 2 2 4 
9 F 2 2 5 

10 N e 2 2 6 

11 N a 2 2 6 1 

12 Mg 2 2 6 2 
13 Al 2 2 6 2 1 
14 Si 2 2 6 2 2 
15 Ρ 2 2 6 2 3 
16 S 2 2 6 2 4 
17 Ci 2 2 6 2 5 
18 A 2 2 6 2 6 

19 Κ 2 2 6 2 6 1 
20 Ca 2 2 6 2 6 2 

21 Sc 2 2 6 2 6 i 2 
22 Ti 2 2 6 2 6 2 2 
23 V 2 2 6 2 6 3 2 
24 Cr 2 2 6 2 6 5 1 
25 Μη 2 2 6 2 6 5 2 
26 Fe 2 2 6 2 6 6 2 
27 Co 2 2 6 2 6 7 2 
28 N i 2 2 6 2 6 8 2 

29 Cu 2 2 6 2 6 10 1 
30 Zn 2 2 6 2 6 10 2 

31 C a 2 2 6 2 6 10 2 1 

32 Ge 2 2 6 2 6 10 2 2 

33 As 2 2 6 2 6 10 2 3 
34 Se 2 2 6 2 6 10 2 4 
35 Br 2 2 6 2 6 10 2 5 
36 Kr 2 2 6 2 6 10 2 6 

37 Rb 2 2 6 2 6 10 2 6 1 

38 Sr 2 2 6 2 6 10 2 6 2 

39 Y 2 2 6 2 6 iö 2 6 1 2 

40 Zr 2 2 6 2 6 10 2 6 2 2 

41 N b 2 2 6 2 6 10 2 6 3 2 

42 M o 2 2 6 2 6 10 2 6 4 2 

43 Tc 2 2 6 2 6 10 2 6 5 2 

44 Ru 2 2 6 2 6 10 2 6 7 1 

45 Rh 2 2 6 2 6 10 2 6 8 1 

46 Pd 2 2 6 2 6 10 2 6 10 

47 Ag 2 2 6 2 6 10 2 6 10 1 

48 Cd 2 2 6 2 6 10 2 6 10 2 
49 In 2 2 6 2 6 10 2 6 10 2 1 

50 Sn 2 2 6 2 6 10 2 6 10 2 2 

51 Sb 2 2 6 2 6 10 2 6 10 2 3 

52 Te 2 2 6 2 6 10 2 6 10 2 4 

531 2 2 6 2 6 10 2 6 10 2 5 

54 Xe 2 2 6 2 6 10 2 6 10 2 6 
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We discussed earlier that an ¿--orbit will penetrate more closely to 
the nucleus than a /7-orbit and, therefore, if there are already other 
electrons present, will correspond to a larger binding energy. 
The third (and fourth) electrons will thus be in 25'-orbits (« = 2, 
/ = 0, m = 0, = ±i). The fifth electron will go into a 2/7-orbit, 
as will the sixth to tenth electrons, corresponding to Λ = 2, / = 1, 
m = 1, 0, — 1, and = ±i. These ten electrons together fill the 
η = 1 and η = 2 shells, and spectroscopy shows that such filled or 
closed shells are extremely stable configurations. They are the 
ground-state configurations of the inert gases which are known to 
be chemically inactive. 

The filling up of the various possible electron orbits continues 
without any complications until all 3/7-orbits are filled. The nine-
teenth electron, however, will go into a 4^-orbit rather than a 
3rf-orbit; the reason is that the quantum defect for a 4^-orbit is so 
large that the effective quantum number is smaller for the 45'-orbit 
than for the 3 J-orbit. However, the 3d effective quantum number 
is smaller than that of the 4/7-orbit and between scandium and 
copper, the 3rf-subshell is filled up. This set of elements form the 
so-called transition metals. In the table on p. 60 we have given 
for all the elements up to xenon the electron configurations 
corresponding to their ground state (compare also Table 2 on 
p. 194). 

The question arises why one may assign quantum numbers 
which were introduced for the case of a single electron to electrons 
which are part of a many-electron configuration. This can be done 
because one may assume that the step-by-step construction of the 
atom, as we have described it, is an adiabatic process so that, in 
fact, the quantum numbers remain unchanged from their initial 
values [compare the discussion by Pauli (1925b; see p . 184 of this 
volume) of the so-called "Aufbauprinzip"]. In wave mechanics 
the justification for this is given by the method of the self-
consistent field, developed by Hartree and Fock (see, for instance, 
Davydov, 1965). 

Essentially, the reason is because to a good approximation each 
electron moves in a field due to the average effect of all the others. 
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If we compare the final wavefunction determined by the self-
consistent field method with a wavefunction constructed from 
single-electron wavefunctions with well-defined quantum numbers, 
we see that our first guess was a good one. 



C H A P T E R VI 

Radiation Theory 

I N THIS last chapter, we shall discuss some aspects of the emission 
of spectral lines. In the previous chapter our main concern was 
the determination of the energies corresponding to stationary 
orbits. We shall now consider such problems as the probabilities 
with which transitions will take place. This will involve applying 
Bohr's correspondence principle and we shall see how this 
principle will enable us to derive expressions for relative intensities 
of different spectral lines and selection rules. 

We shall first of all discuss how Einstein (1917; reprinted in this 
volume on p . 167) introduced transition probabilities. Einstein 
showed how one can derive Planck's formula (1.48) for the 
radiation energy density by assuming that the Boltzmann distribu-
tion of atoms over their energy states must be maintained by 
processes of absorption and emission of light. Moreover, one 
must require that the interaction between radiation and atoms also 
leads to the Maxwell velocity distribution for the atoms, and from 
this it follows that every absorption or emission process has the 
nature of "needle" radiation, that is, there is a definite direction 
assigned to it. To some extent one can say that with Einstein's 
paper the wheel has come full-circle, as it was the consideration of 
the thermodynamic equilibrium of temperature radiation which 
led Planck to his radiation law [compare the derivation of 
equation (1.29)]. 

Consider a set of atoms, which can be stationary states m and η 
with energies and E„. One finds by arguments which are 
exactly the same as those leading to the Maxwell distribution (see, 
for instance, ter Haar, 1954, chap. I l l ) that in thermodynamic 

63 
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equilibrium the numbers of atoms, and N„, in the two states 
are given by the equation 

N„ = Ce-P^-, N„ = C e - ^ \ (6.1) 

where we have written β for 1/^:7, and where C is a normalizing 
constant, which if we assume for a moment that there are only 
two stationary states possible, satisfies the equation 

C = N [ e - ^ ^ - + e-'^^"], (6.2) 

where Ν is the total number of atoms.f 
In order to consider the equilibrium between the radiation field 

and the atoms,} we first of all note that according to Bohr's 
hypotheses an atom in a stationary state with higher energy can 
make a transition to a state with lower energy. Assuming, to fix 
the ideas, that > E^, we find that in the transition from the 
state m to the state n, a light quantum is emitted with frequency ν 
equal to {E^-E^jh [see equation (5.1)]. By analogy with radio-
active processes, Einstein assumed that there is a probability dW^ 
that this spontaneous process will take place during a time interval 
dt with dWi given by the relation 

dW,=AldL (6.3) 

From equation (6.3) it follows that if there is no radiation field 
present which, as we shall see in a moment, inñuences the transi-
tion probabilities, we find for the number iV^ of atoms in the state 
m the equation of motion 

^ = - N „ A l , (6.4) 

or iV„(0 = N „ ( 0 ) e x p ( - ^ ; ; . 0 . (6.5) 

t The restriction to the case where there are only two stationary states is 
not an essential one, and can easily be lifted. We note that we have neglected 
here all complications due to degeneracies of stationary states; this restriction 
can also easily be lifted. 

J The analogous equilibrium between atoms and free electrons has been 
considered by Klein and Rosseland (1921). 
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From this equation it follows that we can interpret 1/̂ 4J, as the 
lifetime of the atom in the excited state m; if there are other 
transitions to lower-lying states possible for an atom in the 
state m, we must replace ylj, by a sum over all relevant lower-lying 
states. 

Consider now the influence of the radiation field on the atoms. 
If p(v) is the radiation energy density at the frequency ν corre-
sponding to the energy difierence we have first of all the 
possibility that an atom in the state η will absorb a quantum hv 
and go over to the state m. The probability that this will 
happen during a time interval dt will be proportional to p(v) and 
we put, therefore, 

dW2 = B:p(v)dt (6.6) 

From classical electromagnetic theory, we know that a radiation 
field will stimulate radiation from a charge, and we expect, 
therefore, by analogy, that the probability that an atom in the 
state m will make a transition to the state η will be enhanced, if a 
radiation field is present. Let dW^ be the probability that such a 
stimulated or induced emission will take place during the time dt; 
we would expect dW^ to be proportional to p(v) and we can 
write 

dW, = Blp(v)dt. (6.7) 

At equilibrium, the number of transitions m-^n must equal the 
number of transitions /i -> m, or 

Nj_Al-hB'i,p(v)-] = N„B:P(v). (6.8) 

From the requirement that as jS 0, that is as the temperature 
tends to infinity, p(v) will tend to infinity, and the fact that as 
β-^0,Ν„-^Ν„, we find 

B"„. = B:, (6.9) 

Secondly, one finds from the requirement that at equilibrium 
p(v) must satisfy the relation (1.1) that 

A'„ = ocv'Bl (6.10) 
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The constant α can be found from the requirement that in the hmit 
as jSAv <| 1, p(v) must be given by the Rayleigh-Jeans law, so that 
we find 

while equations (6.1), (6.8), (6.9) and (6.11) together lead to 
Planck's formula (1.48) for p(v). 

The second conclusion of Einstein's paper on the quantum 
theory of radiation—and the part he himself considers to be the 
more important one—deals with the momentum transferred to the 
atom from the radiation field in an elementary absorption or 
emission process, that is, the recoil of the atom in such a process. 
Einstein once again used arguments from the theory of Brownian 
motion (compare the discussion in Chapter II of the fluctuations 
in energy and momentum in a radiation field), and the fact that it 
follows from classical electrodynamics that in a directed beam of 
light, an energy ε is connected with a momentum e/c in the 
direction of the beam. From this fact Einstein drew the conclusion 
that in absorption process the atom will receive a momentum 
(E^-E„)lc in the direction of the incident radiation while in an 
induced emission process, it will receive the same momentum, but 
in the opposite direction. In accordance with the main ideas of 
the quantum theory of black-body radiation, we must assume that 
the action of black-body radiation on an atom is equivalent to the 
simultaneous action of beams isotropically incident from all 
possible directions, but that in any particular induced emission or 
absorption process only one of these beams is involved. Finally, 
we must consider the momentum transfer in a spontaneous 
emission process. Einstein assumed that also here the atom 
undergoes a recoil (E„-E„)lc and now in a purely random 
direction. This is in contrast to the classical picture of the 
emission of radiation which involves the emission of spherical 
waves. 

Consider now the thermodynamic equilibrium between the 
translational motion of the atom and the radiation. In a time 
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{Mv-Rvx + Ay = (Mv^ (6.12) 

where the bar indicates an average over a suSiciently large number 

of atoms. As t; = 0, we find from equation (6.12) 

— = 2RMv^ = IRkT, (6.13) 
τ 

where we have used the fact that at equihbrium ^Mv^ = ^kT, 

Einstein calculated and R (for details, see his paper on p. 167 
of the present volume). The first of these quantities follows simply 
from a consideration of the fluctuations in the momentum 
transfer, and as this is essentially a random walk process, we 
expect Δ ̂  to be proportional to τ, as is the case. The evaluation 
of R is more complicated, as it involves the calculation of the 
momentum transfer from the radiation field to an atom which is 
moving relative to the field, and it is thus necessary to take terms 
of first order in v/c into account. If one now substitutes the 
expressions found by Einstein into equation (6.13) it is identically 
satisfied. It is, however, essential that in evaluating Δ^ one 
assumes that the atom receives a recoil in each spontaneous 
emission process, because otherwise equation (6.13), which is the 
condition for thermal equilibrium, is not satisfied.! 

An experimental verification of the recoil for the case of free 
electrons was given by Compton (1923a), who studied the 

t This is not strictly correct; Jordan (1924) has shown that one can satisfy 
equation (6.13) without assuming directed spontaneous emission, provided one 
alters at the same time the assumptions about the momentum transfer in 
absorption processes. This would, however, lead to results which seem 
physically unacceptable. 

interval τ the momentum Mv of an atom of mass Μ will be 
subject to two sources for change. The first one is the frictional 
force, Rv, acting on the atom which will lead to a change RVT, and 
the second is a change Δ due to the irregularities (fluctuations) in 
the radiation field. In equilibrium we must have (for the sake of 
simplicity we consider a one-dimensional motion) 
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R G . V I . L The Compton effect. 

large compared to the binding energy of the electron, which 
scatters the X-ray so that we may consider the electron to be free. 
If θ is the angle over which the X-ray is scattered, and φ the angle 
at which the electron takes off (see Fig. VI. 1), conservation of 
energy and of momentum in the x- and the >'-direction gives us 
three equations from which to calculate φ, the frequency V of the 
scattered X-ray, and the momentum ρ of the electron, as functions 
of the scattering angle 

hv + mc^ = Äv' + [ / ?V-hmV]^ 

hv hv' ^ 
— = — c o s ^ + pcos<p, 
c c 

(6.14) 

(6.15) 

t W e use here the relativistic expression [p^c^+m^c^ for the energy. 
We must note that independent of Compton, Debye (1923) developed the 
theory of the Compton effect, as did Kramers, who was persuaded by Bohr 
not to publish his results, as Bohr did not believe them (Bohr was inclined 
rather to abandon the principles of conservation of energy and momentum; 
compare the paper by Bohr, Kramers and Slater, 1924). 

secondary radiation produced by X-rays both theoretically and 
experimentally. On examining the scattered rays from light 
elements he found (Compton, 1923b) that apart from lines with 
the same wavelength as the incident light, there were also lines 
with a slightly longer wavelength, and the displacement depended 
on the angle between the incident light and the scattered light. 
This is the so-called Compton effect. 

In the scattering of hard X-rays by light elements, Av will be 
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hv' 
— s in5 = ρ sin φ, (6.16) 
c 

Eliminating φ from equations (6.15) and (6.16) and then ρ from 
the resulting equation and equation (6.14), and introducing the 
wavelengths λ = φ and λ' = φ \ we find 

A'->1 = A c ( l - c o s 3 ) , (6.17) 

where XQ is the so-called Compton wavelength, 

Ac = — = 0 -02ÄU. (6.18) 
mc 

Relation (6.17) was verified experimentally by Compton. 
Let us now consider what we can learn from assuming that in 

the limit of large quantum numbers classical theory should follow 
asymptotically. We saw one application of this principle—which 
was first explicitly stated by Bohr in 1918 (Bohr, 1918a) although 
the name correspondence principle was first used by him in 1920 
(Bohr, 1920; see also Bohr, 1922b)—in Chapter IV in the second 
derivation of equation (4.4). The reasonableness of this principle 
also follows from equation (5.17) as for a given value of Jj, the 
classical Hmit A -> 0 corresponds to the limit n^-^ co. 

To fix our ideas, we shall first of all consider a system with one 
degree of freedom. From the quantization rule (5.17), which in 
this case simply reads 

J(E) = nh, (6.19) 

it follows that we can write for the energy, E„, of the nth stationary 
orbit 

E„ = E(nh). (6.20) 

The classical frequency of the motion follows from equation 
(5.8), as w has a period of 1: 

dE 
v . = w = - . (6.21) 
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(6.22) 

or v, = v„^„_, = TVe„ (6.23) 

the frequencies corresponding to transitions between stationary 
states with large quantum numbers correspond to the classical 
frequency and the higher harmonics. 

To find the transition probabilities which will give us both the 
selection rules (if we find out which transitions correspond to 
vanishing A^j^) and the relative intensities of allowed transitions, 
we must consider the electrical dipole moment, P , of the system. 
From classical electrodynamics [for instance, Panofsky and 
Phillips, 1955; compare equation (1.22)] it follows that the 
rate at which energy is lost through radiation is given by the 
equation 

where the bar indicates a time average, which for our one-
dimensional system can be taken to be the average over a single 
period. We can compare this with the equation following from 
equation (6.3): 

dE 

j-^=hv,Ar\ (6.25) 

As our system is periodic, we can expand Ρ in a Fourier series, 

P = \ t Py""^, (6.26) 
^ T = - 0 0 

where, as Ρ is real, 
p . = P * . . (6.27) 

If we consider now a transition from the state η to the state 
«—τ, we find for the case where η is large, 
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From equations (6.24), (6.25) and (6.26), we find 

^ " r ^ ^ ^ n ^ - (6-28) 

From this it follows that the transition is forbidden, if vanishes.f 
As a first application, we shall consider the case of a simple 

harmonic oscillator. In that case, we have for the amphtude χ of 
the oscillator 

X = X o C O s 2 π V c I ^ (6.29) 

from which it follows that 

P i = P _ i = i e X o , Λ = 0, τ # ± 1 , (6.30) 

and, therefore, 

(6.31) 

or Α·.-'.ίη''^η, (6.32) 

where we have used the relation [compare equations (1.47) and 

(1.40)] 

En = nhv,, = im(2nv,yxl (6.33) 

From equation (6.30), it follows that for the case of a harmonic 
oscillator the selection rule 

Δ η = ± 1 (6.34) 

holds. The selection rule for η will be different if we consider 
other potential energies. To find the selection rules for k and m, 
which are the proper quantum numbers for the case of a central 
field, we use the fact that the χ-, y-, and z-components of the 

t Strictly speaking, this is incorrect. Transitions can occur corresponding to 
electrical quadrupole, octupole . . . or to magnetic dipole . . . radiations, but 
the intensities corresponding to such transitions are so much smaller (see, for 
instance, Panofsky and Phillips, 1955) that to a good approximation we can 
neglect them. 
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electrical dipole moment expressed in spherical polars are (e is the 
charge of the particle moving in the central field) 

= ercos(/)sin 0 / 

Py = e r s in0s ine , I (6.35) 

P^ = e r c o s 0 . 

To find how these expressions can lead to selection rules for k 
and m, we first of all note that it follows from equations (6.35) 
that the components of Ρ contain θ either in the form e^^ or in the 
form e"**, while they contain φ either in the form e**̂  or in the 
form e"'*, or not at all. One can prove that these factors as 
functions of / can be written in the form (for details compare 
Bohr, 1918a, b , PauH, 1926, or Tomonaga, 1962) 

ê *̂  = ^(Oe±^"^'V^ (6.36) 

e^^^ = ß(0^^^""«', (6.37) 

where A(t) and ^(0 can be written as Fourier series of the same 
form as (6.26) with replaced by v .̂ As in equation (6.37) only 
terms with = ± 1 occur, we have the selection rule 

Afc= ± 1 , (6.38) 

while in equation (6.36) only terms with = ± 1 occur and in P^ 
only the term with = 0 so that for m the selection rule is 

Am = 0 , ± l . (6.39) 
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On an Improvement of Wien's 

Equation for the Spectrum f 

M. P L A N C K 

T H E interesting results of long wave length spectral energy 
measurements which were communicated by Mr. Kurlbaum at 
today's meeting, and which were obtained by him and Mr. Rubens, 
confirm the statement by Mr. Lummer and Mr. Pringsheim, which 
was based on their observations that Wien's energy distribution 
law is not as generally valid, as many have supposed up to now, 
but that this law at most has the character of a limiting case, the 
simple form of which was due only to a restriction to short wave 
lengths and low temperatures. J Since I myself even in this Society 
have expressed the opinion that Wien's law must be necessarily 
true, I may perhaps be permitted to explain briefly the relationship 
between the electromagnetic radiation theory developed by me and 
the experimental data. 

The energy distribution law is according to this theory deter-
mined as soon as the entropy .Sof a linear resonator which interacts 
with the radiation is known as function of the vibrational energy 
U. I have, however, already in my last paper on this subject^ 
stated that the law of increase of entropy is by itself not yet 
sufficient to determine this function completely; my view that 
Wien's law would be of general validity, was brought about 
rather by special considerations, namely by the evaluation of an 
infinitesimal increase of the entropy of a system of η identical 

t Verh. Dtsch. Phys. Ges. Berlin 2 ,202 (1900). 
% Mr. Paschen has written to me that he has also recently found appreciable 

deviations from Wien's law. 
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resonators in a stationary radiation field by two different methods 
which led to the equation 

dU„.AU„J(U„) = ndU,AU.f(U), 

where U„ = nU and / ( [ / ) = - i ^ ^ . 

From this equation Wien's law follows in the form 

d^S _ const 

The expression on the right-hand side of this functional equation 
is certainly the above-mentioned change in entropy since η 
identical processes occur independently, the entropy changes of 
which must simply add up. However, I could consider the 
possibility, even if it would not be easily understandable and in 
any case would be difficult to prove, that the expression on the 
left-hand side would not have the general meaning which I 
attributed to it earlier, in other words: that the values of U„, dU„ 
and AU„ are not by themselves sufficient to determine the change 
of entropy under consideration, but that U itself must also be 
known for this. Following this suggestion I have finally started to 
construct completely arbitrary expressions for the entropy which 
although they are more complicated than Wien's expression still 
seem to satisfy just as completely all requirements of the thermo-
dynamic and electromagnetic theory. 

I was especially attracted by one of the expressions thus 
constructed which is nearly as simple as Wien's expression and 
which deserves to be investigated since Wien's expression is not 
sufficient to cover all observations. We get this expression by 
puttingf 

d^'S _ α 

dlP~ u(ß+uy 

I I use the second derivative of 5 with respect to U since this quantity has a 
simple physical meaning. 
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It is by far the simplest of all expressions which lead to 5 as a 
logarithmic function of [/—which is suggested from probability 
considerations—and which moreover reduces to Wien's expression 
for small values of U, Using the relation 

dU'T 

and Wien's "displacement" lawf one gets a radiation formula 
with two constants: 

E = 

which, as far as I can see at the moment, fits the observational 
data, published up to now, as satisfactorily as the best equations 
put forward for the spectrum, namely those of Thiesen,^{ 
Lummer-Jahnke,"^ and Lummer-Pringsheim.^ (This was demon-
strated by some numerical examples.) I should therefore be 
permitted to draw your attention to this new formula which I 
consider to be the simplest possible, apart from Wien's expression, 
from the point of view of the electromagnetic theory of radiation. 

t The expression of Wien's displacement law is simply 

S=f(Ulv\ 

where ν is the frequency of the resonator, as I shall show elsewhere. 
t One can see there that Mr. Thiesen had put forward his formula before 

Mr. Lummer and Mr. Pringsheim had extended their measurements to longer 
wave lengths. I emphasise this point as I have made a statement to the 
contrary3 before this paper was published. 
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On the Theory of the Energy 

Distribution Law of the Normal 

Spectrum! 

M . P L A N C K 

G E N T L E M E N : when some weeks ago I had the honour to draw 
your attention to a new formula which seemed to me to be suited 
to express the law of the distribution of radiation energy over the 
whole range of the normal spectrum,^ I mentioned already then 
that in my opinion the usefulness of this equation was not based 
only on the apparently close agreement of the few numbers, which 
I could then communicate, with the available experimental data ,J 
but mainly on the simple structure of the formula and especially 
on the fact that it gave a very simple logarithmic expression for 
the dependence of the entropy of an irradiated monochromatic 
vibrating resonator on its vibrational energy. This formula seemed 
to promise in any case the possibility of a general interpretation 
much rather than other equations which have been proposed, 
apart from Wien's formula which, however, was not confirmed by 
experiment. 

Entropy means disorder, and I thought that one should find 
this disorder in the irregularity with which even in a completely 
stationary radiation field the vibrations of the resonator change 
their amplitude and phase, as long as one considers time intervals 
long compared to the period of one vibration, but short compared 
to the duration of a measurement. The constant energy of the 

t Verh. Dtsch. Phys. Ges. Berlin 2 , 237 (1900). 
t i n the meantime Mr. H. Rubens and Mr. F. Kurlbaum^ have given a 

direct confirmation for very long wave lengths. 
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Stationary vibrating resonator can thus only be considered to be a 
time average, or, put differently, to be an instantaneous average of 
the energies of a large number of identical resonators which are 
in the same stationary radiation field, but far enough from one 
another not to influence each other. Since the entropy of a 
resonator is thus determined by the way in which the energy is 
distributed at one time over many resonators, I suspected that one 
should evaluate this quantity in the electromagnetic radiation 
theory by introducing probability considerations, the importance 
of which for the second law of thermodynamics was first of all 
discovered by Mr. L. Boltzmann.^ This suspicion has been con-
firmed; I have been able to derive deductively an expression for 
the entropy of a monochromatically vibrating resonator and thus 
for the energy distribution in a stationary radiation state, that is, 
in the normal spectrum. To do this it was only necessary to 
extend somewhat the interpretation of the hypothesis of "natural 
radiation" which is introduced in electromagnetic theory. Apart 
from this I have obtained other relations which seem to me to be 
of considerable importance for other branches of physics and also 
of chemistry. 

I do not wish to give today this deduction—which is based on 
the laws of electromagnetic radiation, thermodynamics and 
probability calculus—systematically in all details, but rather to 
explain as clearly as possible the real core of the theory. This can 
be done most easily by describing to you a new, completely 
elementary treatment through which one can evaluate—without 
knowing anything about a spectral formula or about any theory— 
the distribution of a given amount of energy over the different 
colours of the normal spectrum using one constant of nature only 
and after that also the value of the temperature of this energy 
radiation using a second constant of nature. You will find many 
points in the treatment to be presented arbitrary and complicated, 
but as I said a moment ago I do not want to pay attention to a 
proof of the necessity and the simple, practical details, but to the 
clarity and uniqueness of the given prescriptions for the solution 
of the problem. 
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Let us consider a large number of monochromatically vibrating 
resonators—A^ of frequency ν (per second), N' of frequency v', 
N" of frequency v", with all Ν large numbers—which are at 
large distances apart and are enclosed in a diathermic medium with 
light velocity c and bounded by reflecting walls. Let the system 
contain a certain amount of energy, the total energy £'t(erg) which 
is present partly in the medium as travelling radiation and partly 
in the resonators as vibrational energy. The question is how in a 
stationary state this energy is distributed over the vibrations of the 
resonators and over the various colours of the radiation present 
in the medium, and what will be the temperature of the total 
system. 

To answer this question we ñrst of all consider the vibrations 
of the resonators and assign to them arbitrarily deñnite energies, 
for instance, an energy Ε to the resonators v, E' to the N' 
resonators v ' , . . . . The sum 

£ + £ ' + £ " + . . . = £ 0 

must, of course, be less than E^, The remainder E^—EQ pertains 
then to the radiation present in the medium. We must now give 
the distribution of the energy over the separate resonators of each 
group, first of all the distribution of the energy Ε over the Ν 
resonators of frequency v. If Ε is considered to be a continuously 
divisible quantity, this distribution is possible in infinitely many 
ways. We consider, however—this is the most essential point of 
the whole calculation—Ε to be composed of a very definite 
number of equal parts and use thereto the constant of nature 
h = 6-55 X 10"^*^ erg sec. This constant multiplied by the common 
frequency ν of the resonators gives us the energy element ε in erg, 
and dividing £ by e we get the number Ρ of energy elements which 
must be divided over the Ν resonators. If the ratio is not an 
integer, we take for Ρ an integer in the neighbourhood. 

It is clear that the distribution of Ρ energy elements over Ν 
resonators can only take place in a finite, well-defined number of 
ways. Each of these ways of distribution we call a "complexion", 
using an expression introduced by Mr. Boltzmann for a similar 
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7 38 11 0 9 2 20 4 4 5 

We have taken here N=10,P= 100. The number of all possible 
complexions is clearly equal to the number of all possible sets of 
numbers which one can obtain for the lower sequence for given 
Ν and P. To exclude all misunderstandings, we remark that two 
complexions must be considered to be different if the correspond-
ing sequences contain the same numbers, but in different order. 
From the theory of permutations we get for the number of all 
possible complexions 

I V ( I V + l ) . ( I V + 2 ) . . . ( N + P - l ) ( I V + P - 1 ) ! 

1 . 2 . 3 . . . P (N-l)lPl 

or to a sufficient approximation, 

_ ( N + P f 

We perform the same calculation for the resonators of the other 
groups, by determining for each group of resonators the number 
of possible complexions for the energy given to the group. 
The multiplication of all numbers obtained in this way gives us 
then the total number R of all possible complexions for the 
arbitrarily assigned energy distribution over all resonators. 

In the same way any other arbitrarily chosen energy distribu-
tion Ε,Ε',Ε",... will correspond to a definite number R of all 
possible complexions which is evaluated in the above manner. 
Among all energy distributions which are possible for a constant 
EQ = E-^E'+E"-h... there is one well-defined one for which the 
number of possible complexions Ro is larger than for any other 

quantity. If we denote the resonators by the numbers 1 , 2 , 3 , Λ ^ , 
and write these in a row, and if we under each resonator put the 
number of its energy elements, we get for each complexion a 
symbol of the following form 

1 2 3 4 5 6 7 8 9 10 
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distribution. We look for this distribution, if necessary by trial, 
since this will just be the distribution taken up by the resonators 
in the stationary radiation field, if they together possess the 
energy EQ. The quantities E, E\ E", ... can then be expressed in 
terms of EQ, Dividing Ε by AT, E' by I S T ' , . . . we obtain the stationary 
value of the energy U^, £7^,, ϊ/^',,, ... of a single resonator of each 
group, and thus also the spatial density of the corresponding 
radiation energy in a diathermic medium in the spectral range 
V to v + i / v , 

u^dv = —^.U^dv, 

so that the energy of the medium is also determined. 
Of all quantities which occur only EQ seems now still to be 

arbitrary. One sees easily, however, how one can finally evaluate 
EQ from the total energy E^, since if the chosen value of EQ leads, 
for instance, to too large a value of E^, we must decrease it, and 
the other way round. 

After the stationary energy distribution is thus determined 
using a constant A, we can find the corresponding temperature θ 
in degrees absolutef using a second constant of nature 
k = 1-346 X 10" ^ erg degree" ^ through the equation 

1 dlnJ^o 

Θ " " D I R * 

The product klnRQ is the entropy of the system of resonators; 
it is the sum of the entropy of all separate resonators. 

It would, to be sure, be very complicated to perform explicitly 
the above-mentioned calculations, although it would not be 
without some interest to test the truth of the attainable degree 
of approximation in a simple case. A more general calculation 
which is performed very simply, using the above prescriptions 
shows much more directly that the normal energy distribution 
determined in this way for a medium containing radiation is 

t The original states "degrees centigrade" which is clearly a slip p . t. H.]. 
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given by the expression 

8πν^ dv 

which corresponds exactly to the spectral formula which I gave 
earlier 

The formal differences are due to the differences in the 
definitions of and E¡^. The first equation is somewhat more 
general inasfar as it is valid for an arbitrary diathermic 
medium with light velocity c. The numerical values of h 
and k which I mentioned were calculated from that equation 
using the measurements by F. Kurlbaum and by O. Lummer 
and E. Pringsheim.! 

I shall now make a few short remarks about the question of the 
necessity of the above given deduction. The fact that the chosen 
energy element ε for a given group of resonators must be propor-
tional to the frequency ν follows immediately from the extremely 
important Wien displacement law. The relation between u and U 
is one of the basic equations of the electromagnetic theory of 
radiation. Apart from that, the whole deduction is based upon 
the theorem that the entropy of a system of resonators with given 
energy is proportional to the logarithm of the total number of 
possible complexions for the given energy. This theorem can be 
split into two other theorems: (1) The entropy of the system in a 
given state is proportional to the logarithm of the probability of 
that state, and (2) The probability of any state is proportional to 
the number of corresponding complexions, or, in other words, any 
definite complexion is equally probable as any other complexion. 
The first theorem is, as far as radiative phenomena are concerned, 
just a definition of the probability of the state, insofar as we have 
for energy radiation no other a priori way to define the probability 
than the definition of its entropy. We have here a distinction from 

t F. Kurlbaum4 gives .Sioo-5o = 00731 Wattcm-2, while O. Lummer and 
E . Pringsheim^ give Am 5 = 29ΑΟμ degree. 

4 OQT 



88 THE OLD QUANTUM THEORY 

the corresponding situation in the kinetic theory of gases. The 
second theorem is the core of the whole of the theory presented 
here: in the last resort its proof can only be given empirically. 
It can also be understood as a more detailed definition of the 
hypothesis of natural radiation which I have introduced. This 
hypothesis I have expressed before^ only in the form that the 
energy of the radiation is completely "randomly" distributed over 
the various partial vibrations present in the radiat ion.! I plan to 
communicate elsewhere in detail the considerations, which have 
only been sketched here, with all calculations and with a survey 
of the development of the theory up to the present. 

To conclude I may point to an important consequence of this 
theory which at the same time makes possible a further test of its 
reliabihty. Mr. Boltzmann'' has shown that the entropy of a 
monatomic gas in equilibrium is equal to ωΚΙηΡο, where PQ is 
the number of possible complexions (the "permutability") corre-
sponding to the most probable velocity distribution, jR being the 
well known gas constant (8-31 χ 10^ for O = 16), ω the ratio of 
the mass of a real molecule to the mass of a mole, which is the 
same for all substances. If there are any radiating resonators 
present in the gas, the entropy of the total system must according 
to the theory developed here be proportional to the logarithm of 
the number of all possible complexions, including both velocities 
and radiation. Since according to the electromagnetic theory of 
the radiation the velocities of the atoms are completely indepen-
dent of the distribution of the radiation energy, the total number 
of complexions is simply equal to the product of the number 

t When Mr. W. Wien in his Paris report about the theoretical radiation laws 
did not find my theory on the irreversible radiation phenomena satisfactory 
since it did not give the proof that the hypothesis of natural radiation is the 
only one which leads to irreversibility, he surely demanded, in my opinion, 
too much of this hypothesis. If one could prove the hypothesis, it would no 
longer be a hypothesis, and one did not have to formulate it. However, one 
could then not derive anything new from it. From the same point of view 
one should also declare the kinetic theory of gases to be unsatisfactory since 
nobody has yet proved that the atomistic hypothesis is the only one which 
explains irreversibility. A similar objection could with more or less justice be 
raised against all inductively obtained theories. 
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relating to the velocities and the number relating to the radiation. 
For the total entropy we have thus 

/ l n ( P o i ^ o ) = / l n P o + / l n i ^ o , 

where / is a factor of proportionality. Comparing this with the 
earlier expressions we find 

f=a)R = k, 

or ω = | = l·62xl0-2^ 
R 

that is, a real molecule is 1-62 χ 10"^"^ of a mole, or, a hydrogen 
atom weighs 1-64 χ 10"^"^ g, since Η = 1Ό1, or, in a mole of any 
substance there are 1/ω = 6-175 χ 10^^ real molecules. Mr. O. E. 
Mayer® gives for this number 640 χ 10^ ̂  which agrees closely. 

Loschmidt's number L, that is, the number of gas molecules in 
1 cm^ at 0°C and 1 atm is 

1^.273.ω 

Mr. Drude^ findsL = 2 1 χ 10^^ 
The Boltzmann-Drude constant a, that is, the average kinetic 

energy of an atom at the absolute temperature 1 is 

α = fωÄ = ffc = 2 · 0 2 x l O - ^ ^ 

Mr. Drude^ finds α = 2-65 χ 10" 
The elementary quantum of electricity e, that is, the electrical 

charge of a positive monovalent ion or of an electron is, if ε is 
the known charge of a monovalent mole, 

g = ect) = 4 -69x l0"^^e . s .u . 

Mr. F. Richarz^^ finds 1-29x10-^^ and Mr. J. J. Thomson^^ 
recently 6-5 χ 1 0 ' 

If the theory is at all correct, all these relations should be not 
approximately, but absolutely, valid. The accuracy of the cal-
culated numbers is thus essentially the same as that of the relatively 
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worst known, the radiation constant k, and is thus much better 

than all determinations up to now. To test it by more direct 

methods should be both an important and a necessary task for 

further research. 

References 

L M . P L A N C K , Verh. D. Physik Ges. Berlin 2 , 202 (1900) (reprinted as 
Paper 1 on p. 79 in the present volume). 

2. H . R U B E N S and F . K U R L B A U M , S.B. Preuss. Akad. Wiss. p. 929 (1900). 
3. L . B O L T Z M A N N , S.B. Akad. Wiss. Wien 7 6 , 373 (1877). 
4. F . K U R L B A U M , Ann. Physik 6 5 , 759 (1898). 
5. O . L U M M E R and Ε . P R I N G S H E I M , Verh. D. Physik Ges. Berlin 2 ,176 (1900). 
6. Μ. P L A N C K , Ann. Physik 1 , 73 (1900). 
7. L . B O L T Z M A N N , S.B. Akad. Wiss. Wien 76 ,428 (1877). 
8. O . Ε . M A Y E R , Die Kinetische Theorie der Gase, 2nd ed., p. 337 (1899). 
9. P. D R U D E , Ann. Physik 1 , 578 (1900). 

10. F . RiCHARZ, Ann. Physik 5 2 , 397 (1894). 
11. J. J. T H O M S O N , Phil. Mag. 4 6 , 528 (1898). 



3 On a Heuristic Point of View about 

the Creation and Conversion of Lightj 

A . EINSTEIN 

THERE exists an essential formal difference between the theoretical 
pictures physicists have drawn of gases and other ponderable 
bodies and Maxwell's theory of electromagnetic processes in 
so-called empty space. Whereas we assume the state of a body to 
be completely determined by the positions and velocities of an, 
albeit very large, still finite number of atoms and electrons, we use 
for the determination of the electromagnetic state in space con-
tinuous spatial functions, so that a finite number of variables 
cannot be considered to be sufficient to fix completely the electro-
magnetic state in space. According to Maxwell's theory, the 
energy must be considered to be a continuous function in space 
for all purely electromagnetic phenomena, thus also for light, 
while according to the present-day ideas of physicists the energy 
of a ponderable body can be written as a sum over the atoms and 
electrons. The energy of a ponderable body cannot be split into 
arbitrarily many, arbitrarily small parts, while the energy of a 
light ray, emitted by a point source of light is according to 
Maxwell's theory (or in general according to any wave theory) of 
light distributed continuously over an ever increasing volume. 

The wave theory of Hght which operates with continuous 
functions in space has been excellently justified for the representa-
tion of purely optical phenomena and it is unlikely ever to be 
replaced by another theory. One should, however, bear in mind 
that optical observations refer to time averages and not to 

Physik 17 ,132 (1905). 

9 1 
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1. On a Difficulty in the Theory of "Black-body Radiation" 

To begin with, we take the point of view of Maxwell's theory and 
electron theory and consider the following case. Let there be in a 
volume completely surrounded by reflecting walls, a number of 
gas molecules and electrons moving freely and exerting upon one 
another conservative forces when they approach each other, that 
is, coUiding with one another as gas molecules according to the 
kinetic theory of gases.f Let there further be a number of electrons 
which are bound to points in space, which are far from one 

t This assumption is equivalent to the preposition that the average kinetic 
energies of gas molecules and electrons are equal to one another in temperature 
equilibrium. It is well known that Mr. Drude has theoretically derived in 
this way the relation between the thermal and electrical conductivities of 
metals. 

instantaneous values and notwithstanding the complete experi-
mental verification of the theory of diffraction, reflexion, refrac-
tion, dispersion, and so on, it is quite conceivable that a theory of 
light involving the use of continuous functions in space will lead 
to contradictions with experience, if it is applied to the phenomena 
of the creation and conversion of light. 

In fact, it seems to me that the observations on "black-body 
radiation", photoluminescence, the production of cathode rays by 
ultraviolet light and other phenomena involving the emission or 
conversion of light can be better understood on the assumption 
that the energy of light is distributed discontinuously in space. 
According to the assumption considered here, when a light ray 
starting from a point is propagated, the energy is not con-
tinuously distributed over an ever increasing volume, but it 
consists of a finite number of energy quanta, localised in space, 
which move without being divided and which can be absorbed or 
emitted only as a whole. 

In the following, I shall communicate the train of thought and 
the facts which led me to this conclusion, in the hope that the 
point of view to be given may turn out to be useful for some 
research workers in their investigations. 
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another, by forces proportional to the distance from those points 
and in the direction towards those points. These electrons are also 
assumed to be interacting conservatively with the free molecules 
and electrons as soon as the latter come close to them. We call 
the electrons bound to points in space "resonators"; they emit and 
absorb electromagnetic waves with definite periods. 

According to present-day ideas on the emission of light, the 
radiation in the volume considered—which can be found for the 
case of dynamic equihbrium on the basis of the Maxwell theory— 
must be identical with the "black-body radiation"—at least 
provided we assume that resonators are present of all frequencies 
to be considered. 

For the time being, we neglect the radiation emitted and 
absorbed by the resonators and look for the condition for 
dynamic equilibrium corresponding to the interaction (coUisions) 
between molecules and electrons. Kinetic gas theory gives for 
this the condition that the average kinetic energy of a resonator 
electron must equal the average kinetic energy corresponding to 
the translational motion of a gas molecule. If we decompose the 
motion of a resonator electron into three mutually perpendicular 
directions of oscillation, we find for the average value Ε of the 
energy of such a linear oscillatory motion 

^ -^ · 
where jR is the gas constant, Ν the number of "real molecules" 
in a gramme equivalent and Τ the absolute temperature. This 
follows as the energy Ε is equal to | of the kinetic energy of a free 
molecules of a monatomic gas since the time averages of the 
kinetic and the potential energy of a resonator are equal to one 
another. If, for some reason—in our case because of radiation 
effects—one manages to make the time average of a resonator 
larger or smaller than E, collisions with the free electrons and 
molecules will lead to an energy transfer to or from the gas which 
has a non-vanishing average. Thus, for the case considered by us, 
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dynamic equilibrium will be possible only if each resonator has 

the average energy E. 

We can now use a similar argument for the interaction between 

the resonators and the radiation which is present in space. 

Mr. Planck^ has derived for this case the condition for dynamic 

equilibrium under the assumption that one can consider the 

radiation as the most random process imaginable.! He found 

where E^ is the average energy of a resonator with eigenfrequency 

V (per oscillating component), L the velocity of light, ν the 

frequency and p^dv the energy per unit volume of that part of the 

radiation which has frequencies between ν and v+rfv. 

If the radiation energy of frequency ν is not to be either 

decreased or increased steadily, we must have 

t One can formulate this assumption as follows. We expand the z-component 
of the electrical force (Z) at a given point in space between the time / = 0 and 
/ = Τ (where Τ indicates a time which is large compared to all oscillation 
periods considered) in a Fourier series 

00 / t \ 
Z= Asin^2^v Y ; + A V J . 

where / I V ^ 0 and 0 ^ ΑΝ ^ 2π, For the same point in space, one considers 
to have made such an expansion arbitrarily often with arbitrarily chosen initial 
times. In that case, we have for the frequency of different combinations of 
values for the quantities A^, and «Ν (statistical) probabilities dWoi the form 

dW = f{A 1, Ai,ai, «2,...) dAidA2,.,d^id<X2„.. 

Radiation is now the most random process imaginable, if 

f{A 1, ̂ 2 , « 1 , «2,...) = Fx{A l)F2Í^2) -JÁ^Úfii^i)..., 

that is, when the probability for a given value of one of the A or the Α is 
independent of the values of the other A and a. The more closely the condition 
is satisfied that the separate pairs of quantities A^ and ΑΝ depend on the 
emission and absorption processes of special groups of resonators, the more 
definitely can we thus say in the case treated by us that the radiation can be 
considered to be the most random imaginable one. 
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R δπν^ 

This relation, which we found as the condition for dynamic 
equilibrium does not only lack agreement with experiment, but it 
also shows that in our picture there can be no question of a 
definite distribution of energy between aether and matter. The 
greater we choose the range of frequencies of the resonators, the 
greater becomes the radiation energy in space and in the limit 
we get 

v^dv = 0 0 . 

2. On Planck's Determination of Elementary Quanta 

We shall show in the following that determination of elementary 
quanta given by Mr. Planck is, to a certain extent, independent of 
the theory of "black-body radiation" constructed by him. 

Planck's formula^ for which agrees with all experiments up 
to the present is 

where α = 6-10 χ 10" ̂ ^ β = 4-866 χ 10"^ ^ 

For large values of T/v, that is, for long wavelengths and high 

radiation densities, this formula has the following limiting form 

One sees that this formula agrees with the one derived in section 1 
from Maxwell theory and electron theory. By equating the 
coefficients in the two formulae, we get 
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3. On the Entropy of the Radiation 

The following considerations are contained in a famous paper 
by Mr. W. Wien and are only mentioned here for the sake of 
completeness. 

Consider radiation which takes up a volume v. We assume that 
the observable properties of this radiation are completely deter-
mined if we give the radiation energy p(v) for all frequencies.f 
As we may assume that radiations of different frequencies can be 
separated without work or heat, we can write the entropy of the 
radiation in the form 

S = v ^(p,v)dv, 
0 

where φ is a function of the variables ρ and v. One can reduce φ 
to a function of one variable only by formulating the statement 
that the entropy of radiation between reflecting walls is not 
changed by an adiabatic compression. We do not want to go into 
this, but at once investigate how one can obtain the function φ 
from the radiation law of a black body. 

tThis is an arbitrary assumption. Of course, one sticks to this simplest 
assumption until experiments force us to give it up, 

Ν = ^ ^ - ^ = 6 1 7 x 1 0 " , 
α 

that is, one hydrogen atom weighs = 1-62 χ lO'^ '^g. This is 
exactly the value found by Mr. Planck, which agrees satisfactorily 
with values of this quantity found by different means. 

We thus reach the conclusion: the higher the energy density and 
the longer the wavelengths of radiation, the more usable is the 
theoretical basis used by us ; for short wavelengths and low 
radiation densities, however, the basis fails completely. 

In the following, we shall consider "black-body radiation", 
basing ourselves upon experience without using a picture of the 
creation and propagation of the radiation. 
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In the case of "black-body radiation", ρ is such a function of ν 
that the entropy is a maximum for a given energy, that is. 

if 

φ{ρ, v)dv = 0. 

pdv = 0. 

From this it follows that for any choice of δρ as function of ν 

where λ is independent of v. In the case of black-body radiation, 
οφΙορ is thus independent of v. 

If the temperature of a black-body radiation in a volume υ = 1 
increases by dT, we have the equation 

dS = 

or, as δφίδρ is independent of v: 

— dpdv, 
v = 0 Φ 

δφ 
dS = -^dE, 

dp 

As dE is equal to the heat transferred and as the process is 
reversible, we have also 

1 
dS = - dE. 

Τ 

Through comparing, we get 

δφ 

Tp 
1 

This is the black-body radiation law. One can thus from the 
function φ obtain the black-body radiation law and conversely 
from the latter the function φ through integration, bearing in 
mind that φ vanishes for ρ = 0, 
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4. Limiting Law for the Entropy of Monochromatic 
Radiation for Low Radiation Density 

From the observation made so far on "black-body radiation", 
it is clear that the law 

put forward originally for "black-body radiation" by Mr. W. Wien 
is not exactly valid. However, for large values of ν/Γ, it is in 
complete agreement with experiment. We shall base our calcula-
tions on this formula, though bearing in mind that our results are 
valid only within certain Umits. 

First of all, we get from this equation 

1 

and then, if we use the relation found in the preceding section 

φ(ρ,ν)= -
βν 

Ι η Λ - 1 

Let there now be radiation of energy Ε with a frequency between ν 
and v+dv and let the volume of the radiation be v. The entropy 
of this radiation is 

Ξ = νφ(ρ,ν)άν== 
βν 

In 
voív^ dv 

- 1 

If we restrict ourselves to investigating the dependence of the 
entropy on the volume occupied by the radiation, and if we 
denote the entropy of the radiation by .SO if it occupies a volume 
Vo, we get 

Ε V 
S - 5 o = ~ l n ~ . 

βν Vo 

This equation shows that the entropy of a monochromatic 
radiation of sufficiently small density varies with volume according 
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5. Molecular-Theoretical Investigation of the Volume-dependence 
of the Entropy of Gases and DQute Solutions 

When calculating the entropy in molecular gas theory one often 
uses the word "probabiUty" in a sense which is not the same as the 
definition of probability given in probability theory. Especially, 
often "cases of equal probability" are fixed by hypothesis under 
circumstances where the theoretical model used is sufiiciently 
definite to deduce probabilities rather than fixing them by 
hypothesis. I shall show in a separate paper that when considering 
thermal phenomena it is completely sufficient to use the so-called 
"statistical probability", and I hope thus to do away with a 
logical difficulty which is hampering the consistent application 
of Boltzmann's principle. At the moment, however, I shall 
give its general formulation and the application to very special 
cases. 

If it makes sense to talk about the probability of a state of a 
system and if, furthermore, any increase of entropy can be 
considered as a transition to a more probable state, the entropy .S^ 
of a system will be a function of the probability Wi of its instan-
taneous state. If, therefore, one has two systems which do not 
interact with one another, one can write 

S^ = Φ^{W,), 52 = 02(^2). 

If one considers these two systems as a single system of entropy 
S and probabihty Wv/q have 

S = 5 i + S 2 = ^ W and W=W^.W2. 

This last relation states that the states of the two systems are 
independent. 

to the same rules as the entropy of a perfect gas or of a dilute 
solution. The equation just found will in the following be 
interpreted on the basis of the principle, introduced by Mr. 
Boltzmann into physics, according to which the entropy of a 
system is a function of the probability of its state. 
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From these equations it follows that 

Φ(}ν,.ψ2) = Φ,(\ν,Ηφ2(}ν2ΐ 

and hence finally Φι(W î) = C In Ŵ i + const, 

φ2(\ν2) = €1η +const , 

= C In Pf-f const. 

The quantity C is thus a universal constant; it follows from 
kinetic gas theory that it has the value R/N where the constants R 
and Ν have the same meaning as above. If .SO is the entropy of a 
certain initial state of the system considered and W the relative 
probability of a state with entropy S, we have in general 

5 - . S o = ^ l n i f . 

We now consider the following special case. Let us consider a 
number, n, moving points (e.g., molecules) in a volume VQ, 
Apart from those, there may be in this space arbitrarily many 
other moving points of some kind or other. We do not make any 
assumptions about the laws according to which the points con-
sidered move in space, except that as far as their motion is 
concerned no part of space—and no direction—is preferred above 
others. The number of the (first-mentioned) points which we are 
considering be moreover so small that we can neglect their mutual 
interaction. 

There corresponds a certain entropy .SO to the system under 
consideration, which may be, for instance, a perfect gas or a dilute 
solution. Consider now the case where a part υ of the volume VQ 
contains all η moving points while otherwise nothing is changed in 
the system. This state clearly corresponds to a different value, 
.Si of the entropy, and we shall now use Boltzmann's principle to 
determine the entropy difference. 

We ask: how large is the probability of this state relative to the 
original state? Or: how large is the probability that at an 
arbitrary moment all η points moving independently of one 
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W 

one obtains from this, applying Boltzmann's principle: 

S - S o = R ^ l n ~ . 
Ν Vo 

It must be noted that it is unnecessary to make any assumptions 
about the laws, according to which the molecules move, to derive 
this equation from which one can easily derive thermodynamically 
the Boyle-Gay-Lussac law and the same law for the osmotic 
pressure, t 

6 . Interpretation of the Expression for the Volume-dependence 
of the Entropy of Monochromatic Radiation 
according to Boltzmann's Principle 

In Section 4, we found for the volume-dependence of the 
entropy of monochromatic radiation the expression 

Ε V 
S - 5 o = ~ l n - . 

βν Vo 

If we write this equation in the form 

and compare it with the general formula which expresses 

t If is the energy of the system, we have 

-d(E-TS) ==:pdv = TdS = RT~ 
Ν V 

or pv = R^T. 

another in a given volume î o are (accidentally) in the volume vl 
One gets clearly for this probability, which is a "statistical 

probability": 
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Boltzmann's principle, 

S - S o = | l n i F , 

we arrive at the following conclusion: 

If monochromatic radiation of frequency ν and energy Ε is 
enclosed (by reflecting walls) in a volume VQ, the probability that 
at an arbitrary time the total radiation energy is in a part ν of the 
volume VQ will be 

From this we then conclude: 

Monochromatic radiation of low density behaves—as long as 
Wien's radiation formula is valid—in a thermodynamic sense, as if 
it consisted of mutually independent energy quanta of magnitude 
Rßv/N. 

We now wish to compare the average magnitude of the "black-
body" energy quanta with the average kinetic energy of the 
translational motion of a molecule at the same temperature. 
The latter is IRTjN, while we get from Wien's formula for the 
average magnitude of the energy quantum 

- = 3 Í r . 
^ 3 BvIT . ^ 

0 ^J5v 

If monochromatic radiation—of sufiiciently low density— 
behaves, as far as the volume-dependence of its entropy is con-
cerned, as a discontinuous medium consisting of energy quanta of 
magnitude RßvjN, it is plausible to investigate whether the laws 
on creation and transformation of light are also such as if light 
consisted of such energy quanta. This question will be considered 
in the following. 
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7. On Stokes' Rule 

Consider monochromatic light which is changed by photo-
luminescence to light of a different frequency; in accordance with 
the result we have just obtained, we assume that both the original 
and the changed light consist of energy quanta of magnitude 
{RlN)ßv, where ν is the corresponding frequency. We must then 
interpret the transformation process as follows. Each initial 
energy quantum of frequency is absorbed and is—at least when 
the distribution density of the initial energy quanta is sufficiently 
low—by itself responsible for the creation of a light quantum of 
frequency ν2; possibly in the absorption of the initial light 
quantum at the same time also Ught quanta of frequencies V 3 , V 4 , . . . 

as well as energy of a different kind (e.g. heat) may be generated. 
It is immaterial through what intermediate processes the final 
result is brought about. Unless we can consider the photo-
luminescing substance as a continuous source of energy, the 
energy of a final light quantum can, according to the energy 
conservation law, not be larger than that of an initial light 
quantum; we must thus have the condition 

R R 
-ßv^S-ßy,, or v ^ ^ v i 

This is the well-known Stokes' rule. 
We must emphasise that according to our ideas the intensity of 

light produced must—other things being equal—be proportional 
to the incident light intensity for weak illumination, as every 
initial quantum will cause one elementary process of the kind 
indicated above, independent of the action of the other incident 
energy quanta. Especially, there will be no lower limit for the 
intensity of the incident light below which the light would be 
unable to produce photoluminescence. 

According to the above ideas about the phenomena deviations 
from Stokes' rule are imaginable in the following cases: 

1. When the number of the energy quanta per unit volume 
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8. On the Production of Cathode Rays by Illumination 
of Solids 

The usual idea that the energy of light is continuously distri-
buted over the space through which it travels meets with especially 
great difficulties when one tries to explain photo-electric 
phenomena, as was shown in the pioneering paper by Mr. 
Lenard.^ 

According to the idea that the incident light consists of energy 
quanta with an energy RßvjN, one can picture the production of 
cathode rays by light as follows. Energy quanta penetrate into a 
surface layer of the body, and their energy is at least partly 
transformed into electron kinetic energy. The simplest picture is 
that a light quantum transfers all of its energy to a single electron; 
we shall assume that that happens. We must, however, not exclude 
the possibility that electrons only receive part of the energy from 
light quanta. An electron obtaining kinetic energy inside the body 
will have lost part of its kinetic energy when it has reached the 
surface. Moreover, we must assume that each electron on leaving 
the body must produce work P , which is characteristic for the 
body. Electrons which are excited at the surface and at right 
angles to it will leave the body with the greatest normal velocity. 
The kinetic energy of such electrons is 

involved in transformations is so large that an energy quantum 
of the light produced may obtain its energy from several initial 
energy quanta. 

2. When the initial (or final) light energetically does not have 
the properties characteristic for "black-body radiation" according 
to Wien's law; for instance, when the initial light is produced by a 
body of so high a temperature that Wien's law no longer holds for 
the wavelengths considered. 

This last possibility needs particular attention. According to the 
ideas developed here, it is not excluded that a "non-Wienian 
radiation", even highly-diluted, behaves energetically differently 
than a "black-body radiation" in the region where Wien's law is valid. 
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If the body is charged to a positive potential Π and surrounded 
by zero potential conductors, and if Π is just able to prevent the 
loss of electricity by the body, we must have 

ηε = ^βν-Ρ, 

where ε is the electrical mass of the electron, or 

UE=:Rßv-P\ 

where Ε is the charge of a gram equivalent of a single-valued ion 
and P ' is the potential of that amount of negative electricity with 
respect to the body.f 

If we put £' = 9 · 6 x l 0 ^ Π χ 10"^ is the potential in Volts 
which the body assumes when it is irradiated in a vacuum. 

To see now whether the relation derived here agrees, as to order 
of magnitude, with experiments, we put P ' = 0, ν = 1Ό3 χ 10^^ 
(corresponding to the ultraviolet hmit of the solar spectrum) and 
β = 4-866 X 10" ^ ^ We obtain Π χ 10^ = 4-3 Volt, a result which 
agrees, as to order of magnitude, with Mr. Lenard's results. ̂  

If the formula derived here is correct, Π must be, if drawn in 
Cartesian coordinates as a function of the frequency of the incident 
light, a straight line, the slope of which is independent of the 
nature of the substance studied. 

As far as I can see, our ideas are not in contradiction to the 
properties of the photoelectric action observed by Mr. Lenard. 
If every energy quantum of the incident light transfers its energy 
to electrons independently of all other quanta, the velocity 
distribution of the electrons, that is, the quality of the resulting 
cathode radiation, will be independent of the intensity of the 
incident light; on the other hand, ceteris paribus, the number of 

t If one assumes that it takes a certain amount of work to free a single 
electron by light from a neutral molecule, one has no need to change this 
relation; one only must consider P' to be the sum of two terms. 
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electrons leaving the body should be proportional to the intensity 
of the incident light. ̂  

As far as the necessary limitations of these rules are concerned, 
we could make remarks similar to those about the necessary 
deviations from the Stokes rule. 

In the preceding, we assumed that the energy of at least part 
of the energy quanta of the incident light was always transferred 
completely to a single electron. If one does not make this obvious 
assumption, one obtains instead of the earlier equation the 
following one 

For cathode-luminescence, which is the inverse process of the 
one just considered, we get by a similar argument 

UE+P'^Rßv. 

For the substances investigated by Mr. Lenard, Π^" is always 
considerably larger than Rßv, as the voltage which the cathode 
rays must traverse to produce even visible light is, in some cases a 
few hundred, in other cases thousands of volts. ̂  We must thus 
assume that the kinetic energy of an electron is used to produce 
many light energy quanta. 

9 . On the Ionisation of Gases by Ultraviolet Light 

We must assume that when a gas is ionised by ultraviolet light, 
always one absorbed light energy quantum is used to ionise just 
one gas molecule. From this follows first of all that the Ionisation 
energy (that is, the energy theoretically necessary for the Ionisation) 
of a molecule cannot be larger than the energy of an effective, 
absorbed light energy quantum. If / denotes the (theoretical) 
Ionisation energy per gram equivalent, we must have 

Rßv^J, 

According to Lenard's measurements, the largest effective wave-
length for air is about 1-9 χ 10" ^ cm, or 

i?i?v = 6 - 4 x l 0 ^ ^ e r g ^ / . 
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An upper limit for the Ionisation energy can also be obtained 
from Ionisation voltages in dilute gases. According to J. Stark* 
the smallest measured Ionisation voltage (for platinum anodes) 
in air is about 10 Volt.f We have thus an upper limit of 9-6 χ 10^ ^ 
for / which is about equal to the observed one. There is still 
another consequence, the verification of which by experiment 
seems to me to be very important. If each light energy quantum 
which is absorbed ionises a molecule, the following relation should 
exist between the absorbed light intensity L and the number j of 
moles ionised by this light: 

^ Rßv 

This relation should, if our ideas correspond to reahty, be vaUd 
for any gas which—for the corresponding frequency—does not 
show an appreciable absorption which is not accompanied by 
Ionisation. 

t In the interior of the gas, the ionisation voltage for negative ions is anyhow 
five times larger. 



The Scattering of α and β Particles by 

Matter and the Structure of the Atomf 

E. R U T H E R F O R D 

§ 1. It is well known that the α and β particles suffer deflexions 
from their rectilinear paths by encounters with atoms of matter. 
This scattering is far more marked for the β than for the α particle 
on account of the much smaller momentum and energy of the 
former particle. There seems to be no doubt that such swiftly 
moving particles pass through the atoms in their path, and that 
the deflexions observed are due to the strong electric field traversed 
within the atomic system. It has generally been supposed that the 
scattering of a pencil of α or j? rays in passing through a thin plate 
of matter is the result of a multitude of small scatterings by the 
atoms of matter traversed. The observations, however, of Geiger 
and Marsden^ on the scattering of α rays indicate that some of 
the α particles must suffer a deflexion of more than a right angle 
at a single encounter. They found, for example, that a small 
fraction of the incident α particles, about 1 in 20,000, were turned 
through an average angle of 90° in passing through a layer of 
gold foil about 0 0 0 0 0 4 c m thick, which was equivalent in 
stopping power of the α particle to l-6milUmetres of air. Geiger^ 
showed later that the most probable angle of deflexion for a pencil 
of α particles traversing a gold-foil of this thickness was about 
0-87°. A simple calculation based on the theory of probability 
shows that the chance of an α particle being deflected through 90° 
is vanishingly small. In addition, it will be seen later that the 

IfPhiL Mag. 21 ,669 (1911). A brief account of this paper was communicated 
to the Manchester Literary and Philosophical Society in February, 1911. 

1 0 8 
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distribution of the α particles for various angles of large deflexion 
does not follow the probability law to be expected if such large 
deflexions are made up of a large number of small deviations. 
It seems reasonable to suppose that the deflexion through a large 
angle is due to a single atomic encounter, for the chance of a 
second encounter of a kind to produce a large deflexion must in 
most cases be exceedingly small. A simple calculation shows that 
the atom must be a seat of an intense electric field in order to 
produce such a large deflexion at a single encounter. 

Recently Sir J. J. Thomson^ has put forward a theory to explain 
the scattering of electrified particles in passing through small 
thicknesses of matter. The atom is supposed to consist of a 
number Ν of negatively charged corpuscles, accompanied by an 
equal quantity of positive electricity uniformly distributed 
throughout a sphere. The deflexion of a negatively electrified 
particle in passing through the atom is ascribed to two causes— 
(1) the repulsion of the corpuscles distributed through the atom, 
and (2) the attraction of the positive electricity in the atom. 
The deflexion of the particle in passing through the atom is 
supposed to be small, while the average deflexion after a large 
number m of encounters was taken as yim. Θ, where 0 is the average 
deflexion due to a single atom. It was shown that the number Ν 
of the electrons within the atom could be deduced from observa-
tions of the scattering of electrified particles. The accuracy of this 
theory of compound scattering was examined experimentally by 
Crowther"^ in a later paper. His results apparently confirmed the 
main conclusions of the theory, and he deduced, on the assumption 
that the positive electricity was continuous, that the number of 
electrons in an atom was about three times its atomic weight. 

The theory of Sir J. J. Thomson is based on the assumption that 
the scattering due to a single atomic encounter is small, and the 
particular structure assumed for the atom does not admit of a 
very large deflexion of an α particle in traversing a single atom, 
unless it be supposed that the diameter of the sphere of positive 
electricity is minute compared with the diameter of the sphere of 
influence of the atom. 
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Since the α and β particles traverse the atom, it should be 
possible from a close study of the nature of the deflexion to form 
some idea of the constitution of the atom to produce the effects 
observed. In fact, the scattering of high-speed charged particles 
by the atoms of matter is one of the most promising methods of 
attack of this problem. The development of the scintillation 
method of counting single α particles affords unusual advantages 
of investigation, and the researches of H. Geiger by this method 
have already added much to our knowledge of the scattering of 
α rays by matter. 

§2. We shall ñrst examine theoretically the single encountersf 
with an atom of simple structure, which is able to produce large 
deflexions of an α particle, and then compare the deductions from 
the theory with the experimental data available. 

Consider an atom which contains a charge ±Ne at its centre 
surrounded by a sphere of electriñcation containing a charge 
±Ne supposed uniformly distributed throughout a sphere of 
radius R, e is the fundamental unit of charge, which in this paper 
is taken as 4*65 χ 10" e.s.u. We shall suppose that for distances 
less than 10" cm the central charge and also the charge on the 
α particle may be supposed to be concentrated at a point. It will 
be shown that the main deductions from the theory are indepen-
dent of whether the central charge is supposed to be positive or 
negative. For convenience, the sign will be assumed to be 
positive. The question of the stability of the atom proposed need 
not be considered at this stage, for this will obviously depend 
upon the minute structure of the atom, and on the motion of the 
constituent charged parts. 

In order to form some idea of the forces required to deflect an 
α particle through a large angle, consider an atom containing a 
positive charge Ne at its centre, and surrounded by a distribution 

tThe deviation of a particle throughout a considerable angle from an 
encounter with a single atom will in this paper be called "single" scattering. 
The deviation of a particle resulting from a multitude of small deviations will 
be termed "compound" scattering. 
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Suppose an α particle of mass m and velocity u and charge Ε 
shot directly towards the centre of the atom. I t will be brought 
to rest at a distance b from the centre given by 

i m u ^ = NeE 
\b IR'^lRy' 

It will be seen that b is an important quantity in later calculations. 
Assuming that the central charge is lOOe, it can be calculated 
that the value of b for an α particle of velocity 2-09 χ 10^ cm per 
second is about 3*4 χ 10" cm. In this calculation b is supposed 
to be very small compared with R. Since R is supposed to be of 
the order of the radius of the atom, viz. 10" ^ cm, it is obvious that 
the α particle before being turned back penetrates so close to the 
central charge, that the field due to the uniform distribution of 
negative electricity may be neglected. In general, a simple 
calculation shows that for all deflexions greater than a degree, 
we may without sensible error suppose the deflexion due to the 
field of the central charge alone. Possible single deviations due 
to the negative electricity, if distributed in the form of corpuscles, 
are not taken into account at this stage of the theory. It will be 
shown later that its effect is in general small compared with that 
due to the central field. 

Consider the passage of a positive electrified particle close to 
the centre of an atom. Supposing that the velocity of the particle 
is not appreciably changed by its passage through the atom, the 
path of the particle under the influence of a repulsive force 

of negative electricity Ne uniformly distributed within a sphere of 

radius R, The electric force X and the potential Κ at a distance r 
from the centre of an atom for a point inside the atom, are given 

by 



112 THE OLD QUANTUM THEORY 

F I G . 4.1 

Let angle POA = 0 . 
Let V = velocity of particle on entering the atom, ν its velocity 

at A, then from consideration of angular momentum 

pV = SAv, 

From conservation of energy 

varying inversely as the square of the distance will be an hyperbola 
with the centre of the atom S as the external focus. Suppose the 
particle to enter the atom in the direction PO (Fig. 4.1), and that 
the direction of motion on escaping the atom is OP ' . OP and O P ' 
make equal angles with the line SA, where A is the apse of the 
hyperbola. /? = SN = perpendicular distance from centre on 
direction of initial motion of particle. 
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Since the eccentricity is sec0, 

SA = SO + OA = pcosecÖ( l+cos0) 

= /? cot iff, 

= SA(SA-f?) = / ) c o t i 0 ( p c o t i 0 - f ? ) , 

or b = 2/?cot0. 

The angle of deviation φ of the particle is π—20 and 

^οΙ\φ = ψ (1) 

This gives the angle of deviation of the particle in terms of é, 
and the perpendicular distance of the direction of projection from 
the centre of the atom. 

For illustration, the angle of deviation φ for different values of 
pjb are shown in the following table: 

pjb 10 5 2 1 0-5 0-25 0-125 
φ 5'T 11-4° 28° 53° 90° 127° 152° 

§3. Probability of Single Deflexion through any Angle 

Suppose a pencil of electrified particles to fall normally on a 
thin screen of matter of thickness t. With the exception of the few 
particles which are scattered through a large angle, the particles 
are supposed to pass nearly normally through the plate with only 
a small change of velocity. Let η = number of atoms in unit 
volume of material. Then the number of collisions of the particle 
with the atom of radius R is uR^nt in the thickness t. 

The probability m of entering an atom within a distance ρ of 
its centre is given by 

m = np^nt, 

t A simple consideration shows that the deflexion is unaltered if the forces 
are attractive instead of repulsive. 
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Chance dm of striking within radii ρ and ρ-\-dp is given by 

dm = Inpntdp = inntb^ cot cosec^ ^φ άφ, (2) 

since οοΐ^φ = 2plb. 

The value of dm gives the fraction of the total number of particles 
which are deviated between the angles φ and φ-{-dφ. 

The fraction ρ of the total number of particles which are 
deflected through an angle greater than φ is given by 

p = iπní&^cotH<^. (3) 

The fraction ρ which is deflected between the angles φι and φ 2 
is given by 

ρ = ^nntb^ (cot^ i ^ i - cot^ i^a) - (4) 

It is convenient to express the equation (2) in another form for 
comparison with experiment. In the case of the α rays, the 
number of scintillations appearing on a constant area of a zinc 
sulphide screen are counted for different angles with the direction 
of incidence of the particles. Let r = distance from point of 
incidence of α rays on scattering material, then if Q be the total 
number of particles falling on the scattering material, the number 

of α particles falling on unit area which are deflected through an 
angle φ is given by 

Qdm ntb^Qcoscc^iφ 

2πr^sinφdφ 16r^ 
(5) 

Since b = 2NeElmu^, we see from this equation that the number 
of α particles (scintillations) per unit area of zinc sulphide screen 
at a given distance r from the point of incidence of the rays is 
proportional to 

(1) cosec'^i^ or ΙΙφ^ if φ be small; 
(2) thickness of scattering material t provided this is small; 
(3) square of the magnitude of central charge Ne;'\ 

tThe original has "magnitude" rather than "square of the magnitude" 
which is clearly a slip [D. t. H.]. 
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(4) and is inversely proportional to {mu^Y, or to the fourth 
power of the velocity if m be constant. 

In these calculations, it is assumed that the α particles scattered 
through a large angle suffer only one large deflexion. For this to 
hold, it is essential that the thickness of the scattering material 
should be so small that the change of a second encounter involving 
another large deflexion is very small. If, for example, the probabil-
ity of a single deflexion φ in passing through a thickness / is 
the probability of two successive deflexions each of value φ is 
1/10^, and is negligibly small. 

The angular distribution of the α particles scattered from a thin 
metal sheet affords one of the simplest methods of testing the 
general correctness of this theory of single scattering. This has 
been done recently for α rays by Dr. Geiger,^ who found that the 
distribution for particles deflected between 30° and 150° from a 
thin gold-foil was in substantial agreement with the theory. 
A more detailed account of these and other experiments to test 
the validity of the theory will be published later. 

§4. Alteration of Velocity in an Atonuc Encounter 

It has so far been assumed that an α or j8 particle does not suffer 
an appreciable change of velocity as the result of a single atomic 
encounter resulting in a large deflexion of the particle. The effect 
of such an encounter in altering the velocity of the particle can be 
calculated on certain assumptions. It is supposed that only two 
systems are involved, viz., the swiftly moving particle and the 
atom which it traverses supposed initially at rest. It is supposed 
that the principle of conservation of momentum and of energy 
applies, and that there is no appreciable loss of energy or 
momentum by radiation. 

Let m be mass of the particle, 
= velocity of approach, 

V2 = velocity of recession, 
Μ = mass of atom, 
V = velocity communicated to atom as result of encounter. 
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FIG. 4.2 

{MVY = {mv^Y + {mv2Y - 2mh^ V2 cos φ. 

By the conservation of energy 

MV^ = mvl-mvl 

Suppose M/m = Ä:and ν2 = pv^, where ρ is < 1. 
From (1) and (2), 

(X + l ) p 2 - 2 p c o s ( ^ = X - l , 

(1) 

(2) 

or 

Consider the case of an α particle of atomic weight 4, deflected 
through an angle of 90° by an encounter with an atom of gold of 
atomic weight 197. 

Since A' = 49 nearly. 

Let OA (Fig. 4.2) represent in magnitude and direction the 
momentum mvi of entering particle, and OB the momentum of 
the receding particle which has been turned through an angle 
AOB = φ. Then BA represents in magnitude and direction the 
momentum MV of the recoiling atom. 
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or the velocity of the particle is reduced only about 2 per cent, by 
the encounter. 

In the case of aluminium Κ = and for φ = 90° ρ = 0-86. 
It is seen that the reduction of velocity of the α particle becomes 

marked on this theory for encounters with the lighter atoms. 
Since the range of an α particle in air or other matter is approxi-
mately proportional to the cube of the velocity, it follows that an 
α particle of range 7 cm has its range reduced to 4-5 cm after 
incurring a single deviation of 90° in traversing an aluminium 
atom. This is of a magnitude to be easily detected experimentally. 
Since the value of Κ is very large for an encounter of a j8 particle 
with an atom, the reduction of velocity on this formula is very 
small. 

Some very interesting cases of the theory arise in considering 
the changes of velocity and the distribution of scattered particles 
when the α particle encounters a light atom, for example a 
hydrogen or helium atom. A discussion of these and similar cases 
is reserved until the question has been examined experimentally. 

§5. Comparison of Single and Compound Scattering 

Before comparing the result of theory with experiment, it is 
desirable to consider the relative importance of single and 
compound scattering in determining the distribution of the 
scattered particles. Since the atom is supposed to consist of a 
central charge surrounded by a uniform distribution of the 
opposite sign through a sphere of radius R, the chance of 
encounters with the atom involving small deflexions is very great 
compared with the chance of a single large deflexion. 

This question of compound scattering has been examined by 
Sir J. J. Thomson in the paper previously discussed (§ 1). In the 
notation of this paper, the average deflexion φ^ due to the field 
of the sphere of positive electricity of radius R and quantity Ne 
was found by him to be 

, NeEl 
Φι =in 2 o -
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The average deflexion Φ2 due to the Ν negative corpuscles 
supposed distributed uniformly throughout the sphere was 
found to be 

The mean deflexion due to both positive and negative electricity 
was taken as 

In a similar way, it is not difiicult to calculate the average 
deflexion due to the atom with a central charge discussed in this 
paper. 

Since the radial electric field X at any distance r from the centre 
is given by 

X = Ne 

it is not difficult to show that the deflexion (supposed small) of an 
electriñed particle due to this field is given by 

θ 

where ρ is the perpendicular from the centre on the path of the 
particle and b has the same value as before. It is seen that the 
value of θ increases with diminution of ρ and becomes great for 
small values of φ. 

Since we have already seen that the deflexions become very 
large for a particle passing near the centre of the atom, it is 
obviously not correct to find the average value by assuming Θ is 
small. 

Taking R of the order 10"^ cm, the value of ρ for a large 
deflexion is for α and β particles of the order 10" ^ ^ cm. Since the 
chance of an encounter involving a large deflexion is small 
compared with the chance of small deflexions, a simple con-
sideration shows that the average small deflexion is practically 
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unaltered if the large deflexions are omitted. This is equivalent 
to integrating over that part of the cross section of the atom 
where the deflexions are small and neglecting the small central 
area. It can in this way be simply shown that the average small 
deflexion is given by 

This value of φι for the atom with a concentrated central charge 
is three times the magnitude of the average deflexion for the same 
value of Ne in the type of atom examined by Sir J. J. Thomson. 
Combining the deflexions due to the electric field and to the 
corpuscles, the average deflexion is 

(Φί + Φΐ)' or 1(5.54+1^)*. 

It will be seen later that the value of Ν is nearly proportional to 
the atomic weight, and is about 100 for gold. The effect due to 
scattering of the individual corpuscles expressed by the second 
term of the equation is consequently small for heavy atoms 
compared with that due to the distributed electric field. 

Neglecting the second term, the average deflexion per atom is 
Snb/SR. We are now in a position to consider the relative effects 
on the distribution of particles due to single and to compound 
scattering. Following J. J. Thomson's argument, the average 
deflexion 0^ after passing through a thickness t of matter is 
proportional to the square root of the number of encounters and 
is given by 

et=^^(nR'nt) = inb^(nnt), 

where η as before is equal to the number of atoms per unit 
volume. 

The probability pi for compound scattering that the deflexion 
of the particle is greater than φ is equal to e'*^^'^'^. Consequently 

φ^=-i^π'b^nt\np,, 
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Next suppose that single scattering alone is operative. We have 
seen (§ 3) that the probability ρ2 of a deflexion greater than φ is 
given by 

= ^πΒ^ηίοοΙ^^φ, 

By comparing these two equations 

Pi^^Pi = - O - 1 8 1 ^ ^ c o t H 0 , 

φ is sufficiently small that 

tan ^φ = ^φ, p2 In = - 0-72. 

If we suppose P2 = 0-5, then p^ = 0-24. 

If / 7 2 = 0 · 1 , / ? i = 0-0004. 

It is evident from this comparison, that the probability for any 
given deflexion is always greater for single than for compound 
scattering. The difference is especially marked when only a small 
fraction of the particles are scattered through any given angle. 
It follows from this result that the distribution of particles due to 
encounters with the atoms is for small thicknesses mainly governed 
by single scattering. N o doubt compound scattering produces 
some effect in equalizing the distribution of the scattered particles; 
but its effect becomes relatively smaller, the smaller the fraction of 
the particles scattered through a given angle. 

§6. Comparison of Theory with Experiments 

On the present theory, the value of the central charge Ne is an 
important constant, and it is desirable to determine its value for 
different atoms. This can be most simply done by determining the 
small fraction of α or )? particles of known velocity falling on a 
thin metal screen, which are scattered between φ and φ-\-άφ where 
φ is the angle of deflexion. The influence of compound scattering 
should be small when this fraction is small. 

Experiments in these directions are in progress, but it is 
desirable at this stage to discuss in the light of the present theory 
the data already published on scattering of α and β particles. 
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The following points will be discussed: 

(a) The "diffuse reflexion" of α particles, i.e. the scattering of 
α particles through large angles (Geiger and Marsden). 

(b) The variation of diffuse reflexion with atomic weight of the 
radiator (Geiger and Marsden). 

(c) The average scattering of a pencil of α rays transmitted 
through a thin metal plate (Geiger). 

(d) The experiments of Crowther on the scattering of β rays of 
different velocities by various metals. 

(a) In the paper of Geiger and Marsden^ on the diffuse 
reflexion of α particles falling on various substances it was shown 
that about 3 0 ^ 0 0 of the α particles from radium C falling on a 
thick plate of platinum are scattered back in the direction of the 
incidence. This fraction is deduced on the assumption that the 
α particles are uniformly scattered in all directions, the observa-
tions being made for a deflexion of about 90°. The form of 
experiment is not very suited for accurate calculation, but from 
the data available it can be shown that the scattering observed is 
about that to be expected on the theory if the atom of platinum 
has a central charge of about 100 e. 

(b) In their experiments on this subject, Geiger and Marsden 
gave the relative number of α particles diffusely reflected from 
thick layers of different metals, under similar conditions. The 
numbers obtained by them are given in the table below, where 
ζ represents the relative number of scattered particles, measured 
by the number of scintillations per minute on a zinc sulphide 
screen. 

On the theory of single scattering, the fraction of the total 
number of α particles scattered through any given angle in passing 
through a thickness t is proportional to nA^t, assuming that the 
central charge is proportional to the atomic weight A, In the 
present case, the thickness of matter from which the scattered 
α particles are able to emerge and affect the zinc sulphide screen 
depends on the metal. Since Bragg has shown that the stopping 
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Metal 
Atomic ζ 

Metal weight ζ ^ 3 / 2 

Lead 207 62 208 
Gold 197 67 242 
Platinum 195 63 232 
Tin 119 34 226 
Süver 108 11 241 
Copper 64 14-5 225 
Iron 56 10-2 250 
Aluminium 27 3-4 243 

Average 233 

power of an atom for an α particle is proportional to the square 
root of its atomic weight, the value of nt for different elements is 
proportional to l/^/>4. In this case t represents the greatest depth 
from which the scattered α particles emerge. The number ζ of 
α particles scattered back from a thick layer is consequently 
proportional to A^^'^ or z\A^^'^ should be a constant. 

To compare this deduction with experiment, the relative values 
of the latter quotient are given in the last column. Considering 
the difficulty of the experiments, the agreement between theory 
and experiment is reasonably good . j 

The single large scattering of α particles will obviously affect to 
some extent the shape of the Bragg ionization curve for a pencil 
of α rays. This effect of large scattering should be marked when 
the α rays have traversed screens of metals of high atomic weight, 
but should be small for atoms of light atomic weight. 

(c) Geiger made a careful determination of the scattering of 
α particles passing through thin metal foils, by the scintillation 
method, and deduced the most probable angle through which the 
α particles are deflected in passing through known thicknesses of 
different kinds of matter. 

A narrow pencil of homogeneous α rays was used as a source. 
After passing through the scattering foil, the total number of 

t The effect of change of velocity in an atomic encounter is neglected in this 
calculation. 
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α particles deflected through difierent angles was directly measured. 
The angle for which the number of scattered particles was a 
maximum was taken as the most probable angle. The variation 
of the most probable angle with thickness of matter was deter-
mined, but calculation from these data is somewhat compHcated 
by the variation of velocity of the α particles in their passage 
through the scattering material. A consideration of the curve of 
distribution of the α particles given in the paper^ shows that the 
angle through which half the particles are scattered is about 
20 per cent greater than the most probable angle. 

We have already seen that compound scattering may become 
important when about half the particles are scattered through a 
given angle, and it is difiicult to disentangle in such cases the 
relative effects due to the two kinds of scattering. An approximate 
estimate can be made in the following way: From (§5) the relation 
between the probabilities and P2 for compound and single 
scattering respectively is given by 

P 2 l n p i = - 0 - 7 2 L 

The probability q of the combined effects may as a first approxi-
mation be taken as 

q = (pí+P¡)^^ 

If^ = 0-5, it follows that 

= 0-2 and P2 = 0-46. 

We have seen that the probability P2 of a single deflexion greater 
than φ is given by 

P2 = inntb^ cot^ ^φ. 

Since in the experiments considered φ is comparatively small 

yjinnt) mu^ ' 

Geiger found that the most probable angle of scattering of the 
α rays in passing through a thickness of gold equivalent in 
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Stopping power to about 0-76 cm of air was Γ 40'. The angle φ 
through which half the α particles are turned thus corresponds to 
2° nearly. 

i = 0-00017 cm; η = 6-07 χ 1 0 " ; 

u (average value) = 1-8 χ 10^. 

E/m = 1-5 X 10^^ e.s.u.; e = 4-65 χ 10" 

Taking the probability of single scattering =0-46 and substitut-
ing the above values in the formula, the value of iVfor gold comes 
out to be 97. 

For a thickness of gold equivalent in stopping power to 2-12 cm 
of air, Geiger found the most probable angle to be 3° 40'. In this 
case i = 0-00047, φ = 4-4% and average í/ = l - 7 x l O ^ and Ν 
comes out to be 114. 

Geiger showed that the most probable angle of deflexion for an 
atom was nearly proportional to its atomic weight. It conse-
quently follows that the value of Ν for different atoms should be 
nearly proportional to their atomic weights, at any rate for atomic 
weights between gold and aluminium. 

Since the atomic weight of platinum is nearly equal to that of 
gold, it follows from these considerations that the magnitude of 
the diffuse reflexion of α particles through more than 90° from 
gold and the magnitude of the average small angle scattering of 
a pencil of rays in passing through gold-foil are both explained on 
the hypothesis of single scattering by supposing the atom of gold 
has a central charge of about 100^. 

(d) Experiments of Crowther on scattering of β rays. We shall 
now consider how far the experimental results of Crowther on 
scattering of β particles of different velocities by various materials 
can be explained on the general theory of single scattering. 
On this theory, the fraction of β particles ρ turned through an angle 
greater than φ is given by 

ρ = inntb^ cot^ ^φ. 

In most of Crowther's experiments φ is sufficiently small that 
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tan may be put equal to ^φ without much error. Consequently 

φ^ = Inntb^ iip = h 

On the theory of compound scattering, we have already seen that 
the chance Pi that the deflexion of the particles is greater than φ 
is given by 

Since in the experiments of Crowther the thickness t of matter 
was determined for which p^ = 

φ2 = 0·96πηίί?^ 

For a probabiUty of the theories of single and compound 
scattering are thus identical in general form, but differ by a 
numerical constant. It is thus clear that the main relations on the 
theory of compound scattering of Sir J. J. Thomson, which were 
verified experimentally by Crowther, hold equally well on the 
theory of single scattering. 

For example, if be the thickness for which half the particles 
are scattered through an angle φ, Crowther showed that Φ1^/ί„ 
and also {mu^lE)yJt^ were constants for a given material when φ 
was fixed. These relations hold also on the theory of single 
scattering. Notwithstanding this apparent similarity in form, the 
two theories are fundamentally different. In one case, the effects 
observed are due to cumulative effects of small deflexions, while 
in the other the large deflexions are supposed to result from a 
single encounter. The distribution of scattered particles is entirely 
different on the two theories when the probability of deflexion 
greater than φ is small. 

We have already seen that the distribution of scattered α particles 
at various angles has been found by Geiger to be in substantial 
agreement with the theory of single scattering, but cannot be 
explained on the theory of compound scattering alone. Since 
there is every reason to believe that the laws of scattering of α and 
β particles are very similar, the law of distribution of scattered 
β particles should be the same as for α particles for small thick-
nesses of matter. Since the value of mu^/E for the β particles is in 
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most cases much smaller than the corresponding value for the 
α particles, the chance of large single deflexions for β particles in 
passing through a given thickness of matter is much greater than 
for α particles. Since on the theory of single scattering the 
fraction of the number of particles which are deflected through a 
given angle is proportional to kt, where t is the thickness supposed 
small and k a constant, the number of particles which are 
undeflected through this angle is proportional to l-kt. From 
considerations based on the theory of compound scattering. 
Sir J. J. Thomson deduced that the probability of deflexion less 
than φ is proportional to 1 —e"'*/' where μ is a constant for any 
given value of φ. 

The correctness of this latter formula was tested by Crowther 
by measuring electrically the fraction I/IQ of the scattered β 
particles which passed through a circular opening subtending an 
angle of 36° with the scattering material. If 

the value of / shou ld decrease very slowly at first with increase of t. 
Crowther, using aluminium as scattering material, states that the 
variation of I/IQ was in good accord with this theory for small 
values of /. On the other hand, if single scattering be present, as it 
undoubtedly is for α rays, the curve showing the relation between 
///o and / should be nearly linear in the initial stages. The 
experiments of Madsen^ on scattering of β rays, although not 
made with quite so small a thickness of aluminium as that used by 
Crowther, certainly support such a conclusion. Considering the 
importance of the point at issue, further experiments on this 
question are desirable. 

From the table given by Crowther of the value φΙ^ί^ for 
different elements for β rays of velocity 2-68 χ 10^ ° cm per second, 
the values of the central charge Ne can be calculated on the theory 
of single scattering. It is supposed, as in the case of the α rays, 
that for the given value of Φ1^/ί,„ the fraction of the β particles 
deflected by single scattering through an angle greater than φ is 
0-46 instead of 0-5, 
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Element 
Atomic 
weight 

Φ 
y/tm Ν 

Aluminium 27 4-25 22 
Copper 63-2 100 42 
Silver 108 15-4 78 
Platinum 194 2 9 0 138 

It will be remembered that the values of Ν for gold deduced 
from scattering of the α rays were in two calculations 97 and 114. 
These numbers are somewhat smaller than the values given above 
for platinum (viz. 138), whose atomic weight is not very different 
from gold. Taking into account the uncertainties involved in the 
calculation from the experimental data, the agreement is 
sufficiently close to indicate that the same general laws of scatter-
ing hold for the α and β particles, notwithstanding the wide 
differences in the relative velocity and mass of these particles. 

As in the case of the α rays, the value of Ν should be most 
simply determined for any given element by measuring the small 
fraction of the incident β particles scattered through a large angle. 
In this way, possible errors due to small scattering will be 
avoided. 

The scattering data for the β rays, as well as for the α rays, 
indicate that the central charge in an atom is approximately 
proportional to its atomic weight. This falls in with the experi-
mental deductions of Schmidt.^ In his theory of absorption of 
β rays, he supposed that in traversing a thin sheet of matter, a 
small fraction α of the particles are stopped, and a small fraction β 
are reflected or scattered back in the direction of incidence. 
From comparison of the absorption curves of different elements, 
he deduced that the value of the constant β for different elements is 
proportional to nA^ where η is the number of atoms per unit 
volume and A the atomic weight of the element. This is exactly 
the relation to be expected on the theory of single scattering if the 
central charge on an atom is proportional to its atomic weight. 

The values of Ν calculated from Crowther's data are given 
below. 
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§7. General Considerations 

In comparing the theory outlined in this paper with the 
experimental results, it has been supposed that the atom consists 
of a central charge supposed concentrated at a point, and that the 
large single deflexions of the α and β particles are mainly due to 
their passage through the strong central field. The effect of the 
equal and opposite compensating charge supposed distributed 
uniformly throughout a sphere has been neglected. Some of the 
evidence in support of these assumptions will now be briefly 
considered. For concreteness, consider the passage of a high speed 
α particle through an atom having a positive central charge Ne, 
and surrounded by a compensating charge of electrons. 
Remembering that the mass, momentum, and kinetic energy of the 
α particle are very large compared with the corresponding values 
for an electron in rapid motion, it does not seem possible from 
dynamic considerations that an α particle can be deflected through 
a large angle by a close approach to an electron, even if the latter 
be in rapid motion and constrained by strong electrical forces. 
It seems reasonable to suppose that the chance of single 
deflexions through a large angle due to this cause, if not zero, 
must be exceedingly small compared with that due to the central 
charge. 

It is of interest to examine how far the experimental evidence 
throws light on the question of the extent of the distribution of the 
central charge. Suppose, for example, the central charge to be 
composed of Ν unit charges distributed over such a volume that 
the large single deflexions are mainly due to the constituent 
charges and not to the external field produced by the distribution. 
It has been shown (§ 3) that the fraction of the α particles scattered 
through a large angle is proportional to {NeEY, where Ne is the 
central charge concentrated at a point and Ε the charge on the 
deflected particle. If, however, this charge is distributed in single 
units, the fraction of the α particles scattered through a given 
angle is proportional to Ne'^ instead of N^e^, In this calculation, 
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the influence of mass of the constituent particle has been neglected, 
and account has only been taken of its electric ñeld. Since it has 
been shown that the value of the central point charge for gold 
must be about 100, the value of the distributed charge required to 
produce the same proportion of single deflexions through a large 
angle should be at least 10,000. Under these conditions the mass 
of the constituent particle would be small compared with that of 
the α particle, and the difficulty arises of the production of large 
single deflexions at all. In addition, with such a large distributed 
charge, the effect of compound scattering is relatively more 
important than that of single scattering. For example, the 
probable small angle of deflexion of a pencil of α particles passing 
through a thin gold-foil would be much greater than that experi-
mentally observed by Geiger (§ 6 b-c). The large and small angle 
scattering could not then be explained by the assumption of a 
central charge of the same value. Considering the evidence as a 
whole, it seems simplest to suppose that the atom contains a 
central charge distributed through a very small volume, and that 
the large single deflexions are due to the central charge as a whole, 
and not to its constituents. At the same time, the experimental 
evidence is not precise enough to negative the possibihty that a 
small fraction of the positive charge may be carried by satelHtes 
extending some distance from the centre. Evidence on this point 
could be obtained by examining whether the same central charge 
is required to explain the large single deflexions of α and β particles; 
for the α particle must approach much closer to the centre of the 
a tom than the β particle of average speed to suffer the same large 
deflexion. 

The general data available indicate that the value of this central 
charge for different atoms is approximately proportional to their 
atomic weights, at any rate for atoms heavier than aluminium. 
It will be of great interest to examine experimentally whether such 
a simple relation holds also for the lighter atoms. In cases where 
the mass of the deflecting atom (for example, hydrogen, helium, 
lithium) is not very different from that of the α particle, the 
general theory of single scattering will require modification, for it 
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is necessary to take into account the movements of the atom itself 
(see §4). 

It is of interest to note that Nagaoka® has mathematically 
considered the properties of a "Saturnian" atom which he 
supposed to consist of a central attracting mass surrounded by 
rings of rotating electrons. He showed that such a system was 
stable if the attractive force was large. From the point of view 
considered in this paper, the chance of large deflexion would 
practically be unaltered, whether the atom is considered to be a 
disk or a sphere. It may be remarked that the approximate value 
found for the central charge of the atom of gold (100 e) is about 
that to be expected if the atom of gold consisted of 49 atoms of 
helium, each carrying a charge 2 This may be only a coincidence, 
but it is certainly suggestive in view of the expulsion of helium 
atoms carrying two unit charges from radioactive matter. 

The deductions from the theory so far considered are indepen-
dent of the sign of the central charge, and it has not so far been 
found possible to obtain definite evidence to determine whether 
it be positive or negative. It may be possible to settle the question 
of sign by consideration of the difference of the laws of absorption 
of the β particle to be expected on the two hypotheses, for the 
effect of radiation in reducing the velocity of the β particle should 
be far more marked with a positive than with a negative centre. 
If the central charge be positive, it is easily seen that a positively 
charged mass if released from the centre of a heavy atom, would 
acquire a great velocity in moving through the electric field. 
It may be possible in this way to account for the high velocity of 
expulsion of α particles without supposing that they are initially 
in rapid motion within the atom. 

Further consideration of the appUcation of this theory to these 
and other questions will be reserved for a later paper, when the 
main deductions of the theory have been tested experimentally. 
Experiments in this direction are already in progress by Geiger 
and Marsden. 
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On the Constitution of Atoms 

and Moleculesf 

N. B O H R 

Introduction 

In order to explain the results of experiments on scattering of 
α rays by matter Prof. Rutherford^ has given a theory of the 
structure of atoms. According to this theory, the atoms consist of 
a positively charged nucleus surrounded by a system of electrons 
kept together by attractive forces from the nucleus; the total 
negative charge of the electrons is equal to the positive charge of 
the nucleus. Further, the nucleus is assumed to be the seat of the 
essential part of the mass of the atom, and to have linear dimen-
sions exceedingly small compared with the linear dimensions of the 
whole atom. The number of electrons in an atom is deduced to be 
approximately equal to half the atomic weight. Great interest is 
to be attributed to this atom-model; for, as Rutherford has shown, 
the assumption of the existence of nuclei, as those in question, 
seems to be necessary in order to account for the results of the 
experiments on large angle scattering of the α rays.^ 

In an attempt to explain some of the properties of matter on the 
basis of this atom-model we meet, however, with difficulties of a 
serious nature arising from the apparent instability of the system 
of electrons: difficulties purposely avoided in atom-models 
previously considered, for instance, in the one proposed by 
Sir J. J. Thomson.^ According to the theory of the latter the 
atom consists of a sphere of uniform positive electrification, 
inside which the electrons move in circular orbits. 

tPMY. Mag. 2 6 , 1 (1913). 
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The principal difference between the atom-models proposed by 
Thomson and Rutherford consists in the circumstance that the 
forces acting on the electrons in the atom-model of Thomson 
allow of certain configurations and motions of the electrons for 
which the system is in a stable equihbrium; such configurations, 
however, apparently do not exist for the second atom-model. 
The nature of the difference in question will perhaps be most 
clearly seen by noticing that among the quantities characterizing 
the first atom a quantity appears—the radius of the positive 
sphere—of dimensions of a length and of the same order of 
magnitude as the linear extension of the atom, while such a length 
does not appear among the quantities characterizing the second 
atom, viz. the charges and masses of the electrons and the positive 
nucleus; nor can it be determined solely by help of the latter 
quantities. 

The way of considering a problem of this kind has, however, 
undergone essential alterations in recent years owing to the 
development of the theory of the energy radiation, and the direct 
affirmation of the new assumptions introduced in this theory, 
found by experiments on very different phenomena such as 
specific heats, photoelectric effect, Röntgen-rays, etc. The result 
of the discussion of these questions seems to be a general acknow-
ledgment of the inadequacy of the classical electrodynamics in 
describing the behaviour of systems of atomic s i z e . W h a t e v e r the 
alteration in the laws of motion of the electrons may be, it seems 
necessary to introduce in the laws in question a quantity foreign 
to the classical electrodynamics, i.e. Planck's constant, or as it 
often is called the elementary quantum of action. By the introduc-
tion of this quantity the question of the stable configuration of the 
electrons in the atoms is essentially changed, as this constant is of 
such dimensions and magnitude that it, together with the mass and 
charge of the particles, can determine a length of the order of 
magnitude required. 

This paper is an attempt to show that the appHcation of the 
above ideas to Rutherford's atom-model affords a basis for a 
theory of the constitution of atoms. It will further be shown that 
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from this theory we are led to a theory of the constitution of 
molecules. 

In the present first part of the paper the mechanism of the 
binding of electrons by a positive nucleus is discussed in relation 
to Planck's theory. It will be shown that it is possible from the 
point of view taken to account in a simple way for the law of 
the fine spectrum of hydrogen. Further, reasons are given 
for a principal hypothesis on which the considerations contained 
in the following parts are based. 

I wish here to express my thanks to Prof. Rutherford for his 
kind and encouraging interest in this work. 

PART I.—BINDING OF ELECTRONS BY POSITIVE NUCLEI 

§ 1. General Considerations 

The inadequacy of the classical electrodynamics in accounting 
for the properties of atoms from an atom-model as Rutherford's, 
will appear very clearly if we consider a simple system consisting 
of a positively charged nucleus of very small dimensions and an 
electron describing closed orbits around it. For simplicity, let us 
assume that the mass of the electron is negligibly small in 
comparison with that of the nucleus, and further, that the velocity 
of the electron is small compared with that of light. 

Let us at first assume that there is no energy radiation. In this 
case the electron will describe stationary elliptical orbits. The 
frequency of revolution ω and the major-axis of the orbit 2a will 
depend on the amount of energy W which must be transferred to 
the system in order to remove the electron to an infinitely great 
distance apart from the nucleus. Denoting the charge of the 
electron and of the nucleus by — ̂  and Ε respectively and the mass 
of the electron by m, we thus get 

2^ ^ eE 
ω = — τ , 2α = — . (1) 

π eEm^ W 

Further, it can easily be shown that the mean value of the kinetic 
energy of the electron taken for a whole revolution is equal to W, 
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We see that if the value of Wis not given, there will be no values of 
ω and a characteristic for the system in question. 

Let us now, however, take the effect of the energy radiation into 
account, calculated in the ordinary way from the acceleration of 
the electron. In this case the electron will no longer describe 
stationary orbits. W will continuously increase, and the electron 
will approach the nucleus describing orbits of smaller and smaller 
dimensions, and with greater and greater frequency; the electron 
on the average gaining in kinetic energy at the same time as the 
whole system loses energy. This process will go on until the 
dimensions of the orbit are of the same order of magnitude as the 
dimensions of the electron or those of the nucleus. A simple 
calculation shows that the energy radiated out during the process 
considered will be enormously great compared with that radiated 
out by ordinary molecular processes. 

It is obvious that the behaviour of such a system will be very 
different from that of an atomic system occurring in nature. 
In the first place, the actual atoms in their permanent state seem 
to have absolutely fixed dimensions and frequencies. Further, if 
we consider any molecular process, the result seems always to be 
that after a certain amount of energy characteristic for the 
systems in question is radiated out, the systems will again settle 
down in a stable state of equilibrium, in which the distances apart 
of the particles are of the same order of magnitude as before the 
process. 

Now the essential point in Planck's theory of radiation is that 
the energy radiation from an atomic system does not take place 
in the continuous way assumed in the ordinary electrodynamics, 
but that it, on the contrary, takes place in distinctly separated 
emissions, the amount of energy radiated out from an atomic 
vibrator of frequency ν in a single emission being equal to τΑν, 
where τ is an entire number, and A is a universal constant. ^ 

Returning to the simple case of an electron and a positive 
nucleus considered above, let us assume that the electron at the 
beginning of the interaction with the nucleus was at a great 
distance apart from the nucleus, and had no sensible velocity 
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relative to the latter. Let us further assume that the electron after 
the interaction has taken place has settled down in a stationary 
orbit around the nucleus. We shall, for reasons referred to later, 
assume that the orbit in question is circular; this assumption will, 
however, make no alteration in the calculations for systems 
containing only a single electron. 

Let us now assume that, during the binding of the electron, a 
homogeneous radiation is emitted of a frequency v, equal to half 
the frequency of revolution of the electron in its final orbit; then, 
from Planck's theory, we might expect that the amount of energy 
emitted by the process considered is equal to τΑν, where h is 
Planck's constant and τ an entire number. If we assume that the 
radiation emitted is homogeneous, the second assumption con-
cerning the frequency of the radiation suggests itself, since the 
frequency of revolution of the electron at the beginning of the 
emission is 0. The question, however, of the rigorous validity of 
both assumptions, and also of the application made of Planck's 
theory, will be more closely discussed in §3. 

Putting 

W = τΛ^ω, (2) 

we get by help of the formula (1) 

^ = - ^ ^ - = - ΐ ^ ' ^ ^ = 2 Ä £ -

If in these expressions we give τ different values, we get a series 
of values for W, ω, and a corresponding to a series of configura-
tions of the system. According to the above considerations, we 
are led to assume that these configurations will correspond to 
states of the system in which there is no radiation of energy; 
states which consequently will be stationary as long as the system 
is not disturbed from outside. We see that the value of W is 
greatest if τ has its smallest value 1. This case will therefore 
correspond to the most stable state of the system, i.e. will corre-
spond to the binding of the electron for the breaking up of which 
the greatest amount of energy is required. 
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Putting in the above expressions τ = 1 and Ε = e, and intro-
ducing the experimental values 

^ = 4 - 7 x 1 0 - ^ ^ e /m = 5-31 X 10^^ /i = 6 - 5 x l O - ^ ^ 

we get 

2a = 1-1x10-« cm, ω = 6-2 χ 10^^ sec" \ P^ /^=13V. 

We see that these values are of the same order of magnitude as 
the linear dimensions of the atoms, the optical frequencies, and 
the ionization-potentials. 

The general importance of Planck's theory for the discussion of 
the behaviour of atomic systems was originally pointed out by 
Einstein.^ The considerations of Einstein have been developed 
and applied on a number of different phenomena, especially by 
Stark, Nernst, and Sommerfeld. The agreement as to the order 
of magnitude between values observed for the frequencies and 
dimensions of the atoms, and values for these quantities calcu-
lated by considerations similar to those given above, has been the 
subject of much discussion. It was first pointed out by Haas^ in an 
attempt to explain the meaning and the value of Planck's constant 
on the basis of J. J. Thomson's atom-model, by help of the Hnear 
dimensions and frequency of an hydrogen atom. 

Systems of the kind considered in this paper, in which the forces 
between the particles vary inversely as the square of the distance, 
are discussed in relation to Planck's theory by J. W. Nicholson.® 
In a series of papers this author has shown that it seems to be 
possible to account for lines of hitherto unknown origin in the 
spectra of the stellar nebulae and that of the solar corona, by 
assuming the presence in these bodies of certain hypothetical 
elements of exactly indicated constitution. The atoms of these 
elements are supposed to consist simply of a ring of a few electrons 
surrounding a positive nucleus of negligibly small dimensions. 
The ratios between the frequencies corresponding to the lines in 
question are compared with the ratios between the frequencies 
corresponding to different modes of vibration of the ring of 
electrons. Nicholson has obtained a relation to Planck's theory 
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showing that the ratios between the wave-length of different sets 
of lines of the coronal spectrum can be accounted for with great 
accuracy by assuming that the ratio between the energy of the 
system and the frequency of rotation of the ring is equal to an 
entire multiple of Planck's constant. The quantity Nicholson 
refers to as the energy is equal to twice the quantity which we have 
denoted above by W. In the latest paper cited Nicholson has 
found it necessary to give the theory a more complicated form, 
still, however, representing the ratio of energy to frequency by a 
simple function of whole numbers. 

The excellent agreement between the calculated and observed 
values of the ratios between the wave-lengths in question seems a 
strong argument in favour of the validity of the foundation of 
Nicholson's calculations. Serious objections, however, may be 
raised against the theory. These objections are intimately con-
nected with the problem of the homogeneity of the radiation 
emitted. In Nicholson's calculations the frequency of lines in a 
line-spectrum is identified with the frequency of vibration of a 
mechanical system in a distinctly indicated state of equilibrium. 
As a relation from Planck's theory is used, we might expect that 
the radiation is sent out in quanta; but systems Hke those con-
sidered, in which the frequency is a function of the energy, cannot 
emit a finite amount of a homogeneous radiation; for, as soon as 
the emission of radiation is started, the energy and also the 
frequency of the system are altered. Further, according to the 
calculation of Nicholson, the systems are unstable for some modes 
of vibration. Apart from such objections—which may be only 
formal (see end of the present paper)—it must be remarked, that 
the theory in the form given does not seem to be able to account 
for the well-known laws of Balmer and Rydberg connecting the 
frequencies of the lines in the Hne-spectra of the ordinary elements. 

It will now be attempted to show that the difficulties in question 
disappear if we consider the problems from the point of view 
taken in this paper. Before proceeding it may be useful to restate 
briefly the ideas characterizing the calculations leading to 
equation (3). The principal assumptions used are: 
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§2. Emission of Line-spectra 

Spectrum of Hydrogen,—General evidence indicates that an 
atom of hydrogen consists simply of a single electron rotating 

(1) That the dynamical equilibrium of the systems in the 
stationary states can be discussed by help of the ordinary 
mechanics, while the passing of the systems between different 
stationary states cannot be treated on that basis. 

(2) That the latter process is followed by the emission of a 
homogeneous radiation, for which the relation between the 
frequency and the amount of energy emitted is the one 
given by Planck's theory. 

The first assumption seems to present itself; for it is known that 
the ordinary mechanics cannot have an absolute validity, but will 
only hold in calculations of certain mean values of the motion of 
the electrons. On the other hand, in the calculations of the 
dynamical equilibrium in a stationary state in which there is no 
relative displacement of the particles, we need not distinguish 
between the actual motions and their mean values. The second 
assumption is in obvious contrast to the ordinary ideas of electro-
dynamics, but appears to be necessary in order to account for 
experimental facts. 

In our calculations we have further made use of the more special 
assumptions, viz. that the different stationary states correspond to 
the emission of a different number of Planck's energy-quanta, and 
that the frequency of the radiation emitted during the passing of 
the system from a state in which no energy is yet radiated out to 
one of the stationary states, is equal to half the frequency of 
revolution of the electron in the latter state. We can, however 
(see §3), also arrive at the expressions (3) for the stationary states 
by using assumptions of somewhat different form. We shall, 
therefore, postpone the discussion of the special assumptions, and 
first show how by the help of the above principal assumptions, 
and of the expressions (3) for the stationary states, we can account 
for the line-spectrum of hydrogen. 
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round a positive nucleus of charge e.^f The reformation of a 
hydrogen atom, when the electron has been removed to great 
distances away from the nucleus—e.g. by the effect of electrical 
discharge in a vacuum tube—will accordingly correspond to the 
binding of an electron by a positive nucleus considered in §1 . 
If in (3) we put Ε = e, we get for the total amount of energy 
radiated out by the formation of one of the stationary states. 

The amount of energy emitted by the passing of the system 
from a state corresponding to τ = to one corresponding to 
τ = T 2 , is consequently 

w -w =?ί^Υΐ-Ι') 
^" ^" \τΙ τ\)· 

If now we suppose that the radiation in question is homo-
geneous, and that the amount of energy emitted is equal to Av, 
where ν is the frequency of the radiation, we get 

and from this 

We see that this expression accounts for the law connecting the 
lines in the spectrum of hydrogen. If we put T 2 = 2 and let vary, 
we get the ordinary Balmer series. If we put T 2 = 3, we get the 
series in the ultra-red observed by Paschen and previously 
suspected by Ritz. If we put T 2 = 1 and X2 = 4, 5 , w e get series 
respectively in the extreme ultra-violet and the extreme ultra-red, 
which are not observed, but the existence of which may be 
expected. 

tThe conclusion drawn in ref. 9 is strongly supported by the fact that 
hydrogen, in the experiments on positive rays of Sir J. J. Thomson, lo is the 
only element which never occurs with a positive charge corresponding to the 
loss of more than one electron. 
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The agreement in question is quantitative as well as qualitative. 
Putting 

β = 4 · 7 χ 1 0 - ^ ^ ^/m = 5-31xlO^^ and h = &5xlO'^\ 

we get ^ 3 = 3 - 1 x 1 0 ^ ^ 

The observed value for the factor outside the bracket in the formula 

^"^ '̂̂  3-290 x l O ^ ^ 

The agreement between the theoretical and observed values is 
inside the uncertainty due to experimental errors in the constants 
entering in the expression for the theoretical value. We shall in 
§3 return to consider the possible importance of the agreement in 
question. 

It may be remarked that the fact, that it has not been possible 
to observe more than 12 lines of the Balmer series in experiments 
with vacuum tubes, while 33 lines are observed in the spectra of 
some celestial bodies, is just what we should expect from the above 
theory. According to the equation (3) the diameter of the orbit 
of the electron in the different stationary states is proportional to 
τ^. For τ = 12 the diameter is equal to 1-6 χ 10" ^ cm, or equal to 
the mean distance between the molecules in a gas at a pressure 
of about 7 m m mercury; for τ = 33 the diameter is equal to 
1-2 X 10"^ cm, corresponding to the mean distance of the mole-
cules at a pressure of about 0-02 mm mercury. According to the 
theory the necessary condition for the appearance of a great 
number of lines is therefore a very small density of the gas; for 
simultaneously to obtain an intensity sufficient for observation the 
space filled with the gas must be very great. If the theory is right, 
we may therefore never expect to be able in experiments with 
vacuum tubes to observe the lines corresponding to high numbers 
of the Balmer series of the emission spectrum of hydrogen; it 
might, however, be possible to observe the lines by investigation 
of the absorption spectrum of this gas (see §4). 

It will be observed that we in the above way do not obtain other 
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g V l 1 \ _ 2 π ^ / 1 

If we in this formula put T 2 = 1 or T 2 = 2, we get series of lines 
in the extreme ultra-violet. If we put τ2 = 3, and let vary, we get 
a series which includes 2 of the series observed by Fowler, and 
denoted by him as the first and second principal series of the 
hydrogen spectrum. If we put T 2 = 4, we get the series observed 
by Pickering in the spectrum of ζ Puppis. Every second of the Unes 
in this series is identical with a line in the Balmer series of the 
hydrogen spectrum; the presence of hydrogen in the star in 
question may therefore account for the fact that these Unes are of 
a greater intensity than the rest of the lines in the series. The series 
is also observed in the experiments of Fowler, and denoted in his 
paper as the Sharp series of the hydrogen spectrum. If we finaUy 
in the above formula put T 2 = 5 , 6 , w e get series, the strong lines 
of which are to be expected in the ultra-red. 

The reason why the spectrum considered is not observed in 
ordinary helium tubes may be that in such tubes the ionization of 
helium is not so complete as in the star considered or in the 
experiment of Fowler, where a strong discharge was sent through 
a mixture of hydrogen and helium. The condition for the 
appearance of the spectrum is, according to the above theory, that 
helium atoms are present in a state in which they have lost both 

series of lines, generally ascribed to hydrogen; for instance, the 
series first observed by Pickering in the spectrum of the star 
ζ Puppis, and the set of series recently found by Fowler by 
experiments with vacuum tubes containing a mixture of hydrogen 
and helium. We shall, however, see that, by help of the above 
theory, we can account naturally for these series of lines if we 
ascribe them to hehum. 

A neutral atom of the latter element consists, according to 
Rutherford's theory, of a positive nucleus of charge 2e and two 
electrons. Now considering the binding of a single electron by a 
helium nucleus, we get, putting Ε = lein the expressions (3) of § 1, 
and proceeding in exactly the same way as above, 

8 π ^ / 1 ί \ In^meU 1 1 
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their electrons. Now we must assume that the amount of energy 
to be used in removing the second electron from a heUum atom is 
much greater than that to be used in removing the first. Further, 
it is known from experiments on positive rays, that hydrogen 
atoms can acquire a negative charge; therefore the presence of 
hydrogen in the experiments of Fowler may effect that more 
electrons are removed from some of the helium atoms than would 
be the case if only hehum were present. 

Spectra of other substances,—In case of systems containing 
more electrons we must—in conformity with the result of experi-
ments—expect more complicated laws for the Une-spectra than 
those considered. I shall try to show that the point of view taken 
above allows, at any rate, a certain understanding of the laws 
observed. 

According to Rydberg's theory—with the generalization given 
by Ritz^"^—the frequency corresponding to the lines of the 
spectrum of an element can be expressed by 

V = FXTO-F,(T2), 

where and T 2 are entire numbers, and F j , F j , F 3 , . . . are functions 
of τ which approximately are equal to 

Κ Κ 

^ is a universal constant, equal to the factor outside the bracket 
in the formula (4) for the spectrum of hydrogen. The different 
series appear if we put or T2 equal to a fixed number and let the 
other vary. 

The circumstance that the frequency can be written as a 
difference between two functions of entire numbers suggests an 
origin of the Unes in the spectra in question similar to the one we 
have assumed for hydrogen; i.e. that the lines correspond to a 
radiation emitted during the passing of the system between two 
different stationary states. For systems containing more than one 
electron the detailed discussion may be very complicated, as there 
will be many different configurations of the electrons which can 
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§3. General Considerations continued 

We shall now return to the discussion of the special assumptions 
used in deducing the expressions (3) for the stationary states of a 
system consisting of an electron rotating round a nucleus. 

For one, we have assumed that the different stationary states 
correspond to an emission of a different number of energy-quanta. 
Considering systems in which the frequency is a function of the 
energy, this assumption, however, may be regarded as improbable; 
for as soon as one quantum is sent out the frequency is altered. 
We shall now see that we can leave the assumption used and still 
retain equation (2), and thereby the formal analogy with Planck's 
theory. 

Firstly, it will be observed that it has not been necessary, in 
order to account for the law of the spectra by help of the expressions 
(3) for the stationary states, to assume that in any case a radiation 

be taken into consideration as stationary states. This may account 
for the different sets of series in the Hne spectra emitted from the 
substances in question. Here I shall only try to show how, by help 
of the theory, it can be simply explained that the constant Κ 
entering in Rydberg's formula is the same for all substances. 

Let us assume that the spectrum in question corresponds to the 
radiation emitted during the binding of an electron; and let us 
further assume that the system including the electron considered 
is neutral. The force on the electron, when at a great distance 
apart from the nucleus and the electrons previously bound, will 
be very nearly the same as in the above case of the binding of an 
electron by a hydrogen nucleus. The energy corresponding to one 
of the stationary states will therefore for τ great be very nearly 
equal to that given by the expression (3) in § 1, if we put Ε = e. 
For τ great we consequently get 

\im\x'F,{x)) = \m{x^F,{x)) = ... = 

in conformity with Rydberg's theory. 
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W E V 1 i _^ 

2h' [p(T2) f \ x , \ 

We see that in order to get an expression of the same form as the 
Balmer series we must put / ( τ ) = C T . 

In order to determine c let us now consider the passing of the 
system between two successive stationary states corresponding to 
τ = Ν and τ = Ν—\\ introducing / ( τ ) = cr, we get for the 
frequency of the radiation emitted 

n^me^E'' 2N-Í 
V = 

2c^A^ N\N-iy 

For the frequency of revolution of the electron before and after 
the emission we have 

nVE^ ^ nVE^ 

is sent out corresponding to more than a single energy-quantum, 
Av. Further information on the frequency of the radiation may be 
obtained by comparing calculations of the energy radiation in the 
region of slow vibrations based on the above assumptions with 
calculations based on the ordinary mechanics. As is known, 
calculations on the latter basis are in agreement with experiments 
on the energy radiation in the named region. 

Let us assume that the ratio between the total amount of energy 
emitted and the frequency of revolution of the electron for the 
different stationary states is given by the equation W= f{r)hw, 
instead of by the equation (2). Proceeding in the same way as 
above, we get in this case instead of (3) 

Assuming as above that the amount of energy emitted during 
the passing of the system from a state corresponding to τ = to 
one for which τ = 12 is equal to Av, we get instead of (4) 

π W E V 1 1 \ 
V = 
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If Ν is great the ratio between the frequency before and after 
the emission will be very near equal to 1; and according to the 
ordinary electrodynamics we should therefore expect that the 
ratio between the frequency of radiation and the frequency of 
revolution also is very nearly equal to 1. This condition will only 
be satisfied if c = ^. Pu t t ing / ( τ ) = ^τ, we, however, again arrive 
at the equation (2) and consequently at the expression (3) for the 
stationary states. 

If we consider the passing of the system between two states 
corresponding tox = Ν and τ = Ν—η, where η is small compared 
with N, we get with the same approximation as above, putting 

V = ηω. 

The possibility of an emission of a radiation of such a frequency 
may also be interpreted from analogy with the ordinary electro-
dynamics, as an electron rotating round a nucleus in an elliptical 
orbit will emit a radiation which according to Fourier's theorem 
can be resolved into homogeneous components, the frequencies of 
which are πω, if ω is the frequency of revolution of the electron. 

We are thus led to assume that the interpretation of the 
equation (2) is not that the different stationary states correspond 
to an emission of different numbers of energy-quanta, but that the 
frequency of the energy emitted during the passing of the system 
from a state in which no energy is yet radiated out to one of the 
different stationary states, is equal to different multiples of | ω , 
where ω is the frequency of revolution of the electron in the state 
considered. From this assumption we get exactly the same 
expressions as before for the stationary states, and from these by 
help of the principal assumptions of § 1 the same expression for 
the law of the hydrogen spectrum. Consequently we may regard 
our prehminary considerations of § 1 only as a simple form of 
representing the results of the theory. 

Before we leave the discussion of this question, we shall for a 
moment return to the question of the significance of the agreement 
between the observed and calculated values of the constant 
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entering in the expressions (4) for the Balmer series of the 
hydrogen spectrum. From the above consideration it will follow 
that, taking the starting-point in the form of the law of the 
hydrogen spectrum and assuming that the different lines corre-
spond to a homogeneous radiation emitted during the passing 
between different stationary states, we shall arrive at exactly the 
same expression for the constant in question as that given by (4), 
if we only assume (1) that the radiation is sent out in quanta Av, 
and (2) that the frequency of the radiation emitted during the 
passing of the system between successive stationary states will 
coincide with the frequency of revolution of the electron in the 
region of slow vibrations. 

As all the assumptions used in this latter way of representing 
the theory are of what we may call a qualitative character, we are 
justified in expecting—if the whole way of considering is a sound 
one—an absolute agreement between the values calculated and 
observed for the constant in question, and not only an approxi-
mate agreement. The formula (4) may therefore be of value in the 
discussion of the results of experimental determinations of the 
constants m, and A. 

While there obviously can be no question of a mechanical 
foundation of the calculations given in this paper, it is, however, 
possible to give a very simple interpretation of the result of the 
calculation in §1 by help of symbols taken from the ordinary 
mechanics. Denoting the angular momentum of the electron 
round the nucleus by Af, we have immediately for a circular orbit 
xM = Γ/ω, where ω is the frequency of revolution and Τ the 
kinetic energy of the electron; for a circular orbit we further have 
Τ = ^ a n d from (2), we consequently get 

Μ = τΜο, 

where M Q = ; ^ = 1·04χ l O ' ^ ^ 
2π 

If we therefore assume that the orbit of the electron in the 
stationary states is circular, the result of the calculation in § 1 can 
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§4. Absorption of Radiation 

In order to account for Kirchhoff's law it is necessary to 
introduce assumptions on the mechanism of absorption of radia-
tion which correspond to those we have used considering the 
emission. Thus we must assume that a system consisting of a 
nucleus and an electron rotating round it under certain circum-
stances can absorb a radiation of a frequency equal to the 
frequency of the homogeneous radiation emitted during the 
passing of the system between different stationary states. Let us 
consider the radiation emitted during the passing of the system 
between two stationary states A^ and A2 corresponding to values 
for τ equal to and > T2. A S the necessary condition for 
an emission of the radiation in question was the presence of 
systems in the state A j , we must assume that the necessary 
condition for an absorption of the radiation is the presence of 
systems in the state A2. 

These considerations seem to be in conformity with experiments 
on absorption in gases. In hydrogen gas at ordinary conditions 

be expressed by the simple condition: that the angular momentum 
of the electron round the nucleus in a stationary state of the 
system is equal to an entire multiple of a universal value, indepen-
dent of the charge on the nucleus. The possible importance of the 
angular momentum in the discussion of atomic systems in relation 
to Planck's theory is emphasized by Nicholson.® 

The great number of different stationary states we do not 
observe except by investigation of the emission and absorption of 
radiation. In most of the other physical phenomena, however, we 
only observe the atoms of the matter in a single distinct state, i.e. 
the state of the atoms at low temperature. From the preceding 
considerations we are immediately led to the assumption that the 
"permanent" state is the one among the stationary states during 
the formation of which the greatest amount of energy is emitted. 
According to equation (3), this state is the one which corresponds 
tOT = 1. 
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for instance there is no absorption of a radiation of a frequency 
corresponding to the hne-spectrum of this gas; such an absorption 
is only observed in hydrogen gas in a luminous state. This is what 
we should expect according to the above. We have in §2 assumed 
that the radiation in question was emitted during the passing of 
the systems between stationary states corresponding to τ ^ 2. 
The state of the atoms in hydrogen gas at ordinary conditions 
should, however, correspond to τ = 1; furthermore, hydrogen 
atoms at ordinary conditions combine into molecules, i.e. into 
systems in which the electron have frequencies different from those 
in the atoms (see Part III). From the circumstance that certain 
substances in a non-luminous state, as, for instance, sodium 
vapour, absorb radiation corresponding to lines in the line-spectra 
of the substances, we may, on the other hand, conclude that the 
lines in question are emitted during the passing of the system 
between two states, one of which is the permanent state. 

How much the above considerations differ from an interpreta-
tion based on the ordinary electrodynamics is perhaps most clearly 
shown by the fact that we have been forced to assume that a system 
of electrons will absorb a radiation of a frequency different from 
the frequency of vibration of the electron calculated in the 
ordinary way. It may in this connexion be of interest to mention a 
generalization of the considerations to which we are led by 
experiments on the photo-electric effect, and which may be able to 
throw some light on the problem in question. Let us consider a 
state of the system in which the electron is free, i.e. in which the 
electron possesses kinetic energy sufñcient to remove to infinite 
distances from the nucleus. If we assume that the motion of the 
electron is governed by the ordinary mechanics and that there is 
no (sensible) energy radiation, the total energy of the system—as 
in the above considered stationary states—will be constant. 
Further, there will be perfect continuity between the two kinds of 
states, as the difference between frequency and dimensions of the 
systems in successive stationary states will diminish without limit 
if τ increases. In the following considerations we shall for the 
sake of brevity refer to the two kinds of states in question as 
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"mechanicar ' states; by this notation only emphasizing the 
assumption that the motion of the electron in both cases can be 
accounted for by the ordinary mechanics. 

Tracing the analogy between the two kinds of mechanical 
states, we might now expect the possibility of an absorption of 
radiation, not only corresponding to the passing of the system 
between two different stationary states, but also corresponding to 
the passing between one of the stationary states and a state in 
which the electron is free; and as above, we might expect that the 
frequency of this radiation was determined by the equation Ε = Av, 
where Ε is the difference between the total energy of the system 
in the two states. As it will be seen, such an absorption of radia-
tion is just what is observed in experiments on ionization by 
ultra-violet light and by Röntgen rays. Obviously, we get in this 
way the same expression for the kinetic energy of an electron 
ejected from an atom by photo-electric effect as that deduced by 
E i n s t e i n , i . e . Γ = Av - ^ , where T i s the kinetic energy of the 
electron ejected, and Wthe total amoimt of energy emitted during 
the original binding of the electron. 

The above considerations may further accoimt for the result of 
some experiments of R. W. Wood^^ on absorption of light by 
sodium vapour. In these experiments, an absorption correspond-
ing to a very great number of lines in the principal series of the 
sodium spectrum is observed, and in addition a continuous 
absorption which begins at the head of the series and extends to 
the extreme ultra-violet. This is exactly what we should expect 
according to the analogy in question, and, as we shall see, a closer 
consideration of the above experiments allows us to trace the 
analogy still further. As mentioned in §2 the radii of the orbits of 
the electrons will for stationary states corresponding to high 
values for τ be very great compared with ordinary atomic dimen-
sions. This circumstance was used as an explanation of the 
non-appearance in experiments with vacuum-tubes of lines 
corresponding to the higher numbers in the Balmer series of the 
hydrogen spectrum. This is also in conformity with experiments 
on the emission spectrum of sodium; in the principal series of the 
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emission spectrum of this substance rather few lines are observed. 
Now in Wood's experiments the pressure was not very low, and 
the states corresponding to high values for τ could therefore not 
appear; yet in the absorption spectrum about 50 Unes were 
detected. In the experiments in question we consequently observe 
an absorption of radiation which is not accompanied by a 
complete transition between two different stationary states. 
According to the present theory we must assume that this absorp-
tion is foUowed by an emission of energy during which the 
systems pass back to the original stationary state. If there are no 
colUsions between the different systems this energy will be emitted 
as a radiation of the same frequency as that absorbed, and there 
will be no true absorption but only a scattering of the original 
radiation; a true absorption wiU not occur unless the energy in 
question is transformed by coUisions into kinetic energy of free 
particles. In analogy we may now from the above experiments 
conclude that a bound electron—also in cases in which there is no 
ionization—wiU have an absorbing (scattering) influence on a 
homogeneous radiation, as soon as the frequency of the radiation 
is greater than Wjh, where Wis the total amount of energy emitted 
during the binding of the electron. This would be highly in favour 
of a theory of absorption as the one sketched above, as there can 
in such a case be no question of a coincidence of the frequency of 
the radiation and a characteristic frequency of vibration of the 
electron. It will further be seen that the assumption, that there 
wiU be an absorption (scattering) of any radiation corresponding 
to a transition between two different mechanical states, is in perfect 
analogy with the assumption generally used that a free electron 
wiU have an absorbing (scattering) influence on light of any 
frequency. Corresponding considerations wiU hold for the 
emission of radiation. 

In analogy to the assumption used in this paper that the 
emission of line-spectra is due to the re-formation of atoms after 
one or more of the lightly bound electrons are removed, we may 
assume that the homogeneous Röntgen radiation is emitted during 
the settling down of the systems after one of the firmly bound 

6 OQT 
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electrons escapes, e.g. by impact of cathode particles. ^ In the 
next part of this paper, dealing with the constitution of atoms, 
we shall consider the question more closely and try to show that a 
calculation based on this assumption is in quantitative agreement 
with the results of experiments: here we shall only mention briefly 
a problem with which we meet in such a calculation. 

Experiments on the phenomena of X-rays suggest that not only 
the emission and absorption of radiation cannot be treated by the 
help of the ordinary electrodynamics, but not even the result of a 
colHsion between two electrons of which the one is bound in an 
atom. This is perhaps most clearly shown by some very instruc-
tive calculations on the energy of jS-particles emitted from radio-
active substances recently published by Rutherford.^® These 
calculations strongly suggest that an electron of great velocity in 
passing through an atom and colliding with the bound electrons 
will loose energy in distinct finite quanta. As is immediately seen, 
this is very different from what we might expect if the result of 
the coUisions was governed by the usual mechanical laws. The 
failure of the classical mechanics in such a problem might also be 
expected beforehand from the absence of anything like equi-
partition of kinetic energy between free electrons and electrons 
bound in atoms. From the point of view of the "mechanical" 
states we see, however, that the following assumption—^which is 
in accord with the above analogy—might be able to account for 
the result of Rutherford's calculation and for the absence of 
equipartition of kinetic energy: two colliding electrons, bound or 
free, will, after the collision as well as before, be in mechanical 
states. Obviously, the introduction of such an assumption would 
not make any alteration necessary in the classical treatment of a 
collision between two free particles. But, considering a collision 
between a free and a bound electron, it would follow that the 
bound electron by the coUision could not acquire a less amount of 
energy than the difference in energy corresponding to successive 
stationary states, and consequently that the free electron which 
collides with it could not lose a less amount. 

The preliminary and hypothetical character of the above 
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considerations needs not to be emphasized. The intention, how-
ever, has been to show that the sketched generalization of the 
theory of the stationary states possibly may afford a simple basis 
of representing a number of experimental facts which cannot be 
explained by help of the ordinary electrodynamics, and that the 
assumptions used do not seem to be inconsistent with experiments 
on phenomena for which a satisfactory explanation has been given 
by the classical dynamics and the wave theory of light. 

§ 5. The Permanent State of an Atomic System 

We shall now return to the main object of this paper—the 
discussion of the "permanent" state of a system consisting of 
nuclei and bound electrons. For a system consisting of a nucleus 
and an electron rotating round it, this state is, according to the 
above, determined by the condition that the angular momentum 
of the electron round the nucleus is equal to h/ln. 

On the theory of this paper the only neutral atom which 
contains a single electron is the hydrogen atom. The permanent 
state of this atom should correspond to the values of a and ω 
calculated in § 1. Unfortunately, however, we know very little of 
the behaviour of hydrogen atoms on account of the small dissocia-
tion of hydrogen molecules at ordinary temperatures. In order to 
get a closer comparison with experiments, it is necessary to 
consider more complicated systems. 

Considering systems in which more electrons are bound by a 
positive nucleus, a configuration of the electrons which presents 
itself as a permanent state is one in which the electrons are 
arranged in a ring round the nucleus. In the discussion of this 
problem on the basis of the ordinary electrodynamics, we meet— 
apart from the question of the energy radiation—with new 
difficulties due to the question of the stability of the ring. Dis-
regarding for a moment this latter difficulty, we shall first consider 
the dimensions and frequency of the systems in relation to 
Planck's theory of radiation. 

Let us consider a ring consisting of η electrons rotating round a 
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nucleus of charge E, the electrons being arranged at equal angular 
intervals around the circumference of a circle of radius a. 

The total potential energy of the system consisting of the 
electrons and the nucleus is 

P=-"-^ (E-es„l 
a 

where n̂ = 7 L, cosec —. 

For the radial force exerted on an electron by the nucleus and the 
other electrons we get 

ldP_ 

η da a^ 

Denoting the kinetic energy of an electron by Γ and neglecting the 
electromagnetic forces due to the motion of the electrons (see 
Part II), we get, putting the centrifugal force on an electron equal 
to the radial force. 

e ^ ^ e 
— = - 2 ( E - e s , , ) , or T = — 
a a^ 2a 

From this we get for the frequency of revolution 

1 l/e(E-es„)) 
ω = 2nyJ\ ma 3 

The total amount of energy W necessary to be transferred to the 
system in order to remove the electrons to infinite distances apart 
from the nucleus and from each other is 

= - Ρ - η Γ = ^ ( £ - β 5 , ) = η Γ , 

equal to the total kinetic energy of the electrons. 
We see that the only difference in the above formula and those 

holding for the motion of a single electron in a circular orbit 
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round a nucleus is the exchange of Ε for E—es„. It is also immedi-
ately seen that corresponding to the motion of an electron in an 
elliptical orbit round a nucleus, there will be a motion of the 
η electrons in which each rotates in an elliptical orbit with the 
nucleus in the focus, and the η electrons at any moment are 
situated at equal angular intervals on a circle with the nucleus as 
the centre. The major axis and frequency of the orbit of the single 
electrons will for this motion be given by the expressions (1) if we 
replace Ε by E—es„ and W by W/n. Let us now suppose that the 
system of η electrons rotating in a ring round a nucleus is formed 
in a way analogous to the one assumed for a single electron 
rotating round a nucleus. It will thus be assumed that the 
electrons, before the binding by the nucleus, were at a great 
distance apart from the latter and possessed no sensible velocities, 
and also that during the binding a homogeneous radiation is 
emitted. As in the case of a single electron, we have here that the 
total amount of energy emitted during the formation of the system 
is equal to the final kinetic energy of the electrons. If we now 
suppose that during the formation of the system the electrons at 
any moment are situated at equal angular intervals on the 
circumference of a circle with the nucleus in the centre, from 
analogy with the considerations in § 1 we are here led to assume 
the existence of a series of stationary configurations in which the 
kinetic energy per electron is equal to τΑ^ω, where τ is an entire 
number, A Planck's constant, and ω the frequency of revolution. 
The configuration in which the greatest amount of energy is 
emitted is, as before, the one in which τ = 1. This configuration 
we shall assume to be the permanent state of the system if the 
electrons in this state are arranged in a single ring. As for the case 
of a single electron we get that the angular momentum of each of 
the electrons is equal to Α/2π. It may be remarked that instead of 
considering the single electrons we might have considered the ring 
as an entity. This would, however, lead to the same result, for in 
this case the frequency of revolution ω will be replaced by the 
frequency πω of the radiation from the whole ring calculated from 
the ordinary electrodynamics, and Γ by the total kinetic energy ηΤ, 
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There may be many other stationary states corresponding to 
other ways of forming the system. The assumption of the 
existence of such states seems necessary in order to account for 
the Une-spectra of systems containing more than one electron; it 
is also suggested by the theory of Nicholson mentioned in § 1, to 
which we shaU return in a moment. The consideration of the 
spectra, however, gives, as far as I can see, no indication of the 
existence of stationary states in which aU the electrons are 
arranged in a ring and which correspond to greater values for the 
total energy emitted than the one we above have assumed to be 
the permanent state. 

Further, there may be stationary configurations of a system of 
η electrons and a nucleus of charge Ε in which all the electrons 
are not arranged in a single ring. The question, however, of the 
existence of such stationary configurations is not essential for our 
determination of the permanent state, as long as we assume that 
the electrons in this state of the system are arranged in a single 
ring. Systems corresponding to more compUcated configurations 
will be discussed below. 

Using the relation Τ = Η\ω we get, by help of the above 
expressions for Τ and ω, values for a and ω corresponding to the 
permanent state of the system which only differ from those given 
by equations (3), by exchange of Ε for E—es^. 

The question of stability of a ring of electrons rotating round a 
positive charge is discussed in great detail by Sir J. J. Thomson.^ 
An adaption of Thomson's analysis for the case here considered 
of a ring rotating round a nucleus of negligibly small linear 
dimensions is given by Nicholson.® The investigation of the 
problem in question naturaUy divides in two parts : one concerning 
the stability for displacements of the electrons in the plane of the 
ring; one concerning displacements perpendicular to this plane. 
As Nicholson's calculations show, the answer to the question of 
stability differs very much in the two cases in question. While the 
ring for the latter displacements in general is stable if the number 
of electrons is not great, the ring is in no case considered by 
Nicholson stable for displacements of the first kind. 
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According, however, to the point of view taken in this paper, 
the question of stabihty for displacements of the electrons in the 
plane of the ring is most intimately connected with the question 
of the mechanism of the binding of the electrons, and like the 
latter cannot be treated on the basis of the ordinary dynamics. 
The hypothesis of which we shall make use in the following is that 
the stability of a ring of electrons rotating round a nucleus is 
secured through the above condition of the universal constancy 
of the angular momentum, together with the further condition 
that the configuration of the particles is the one by the formation 
of which the greatest amount of energy is emitted. As will be 
shown, this hypothesis is, concerning the question of stability for 
a displacement of the electrons perpendicular to the plane of the 
ring, equivalent to that used in ordinary mechanical calculations. 

Returning to the theory of Nicholson on the origin of lines 
observed in the spectrum of the solar corona, we shall now see 
that the difficulties mentioned in § 1 may be only formal. In the 
first place, from the point of view considered above the objection 
as to the instabihty of the systems for displacements of the electrons 
in the plane of the ring may not be valid. Further, the objection 
as to the emission of the radiation in quanta will not have 
reference to the calculations in question, if we assume that in the 
coronal spectrum we are not dealing with a true emission but 
only with a scattering of radiation. This assumption seems 
probable if we consider the conditions in the celestial body in 
question; for on account of the enormous rarefaction of the 
matter there may be comparatively few collisions to disturb the 
stationary states and to cause a true emission of light correspond-
ing to the transition between different stationary states; on the 
other hand there will in the solar corona be intense illumination of 
light of all frequencies which may excite the natural vibrations of 
the systems in the different stationary states. If the above assump-
tion is correct, we immediately understand the entirely different 
form for the laws connecting the lines discussed by Nicholson and 
those connecting the ordinary line-spectra considered in this 
paper. 
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Proceeding to consider systems of a more complicated constitu-
tion, we shall make use of the following theorem, which can be 
very simply proved: 

" In every system consisting of electrons and positive nuclei, in 
which the nuclei are at rest and the electrons move in circular 
orbits with a velocity small compared with the velocity of light, the 
kinetic energy will be numerically equal to half thepotential energy." 

By help of this theorem we get—as in the previous cases of a 
single electron or of a ring rotating round a nucleus—that the 
total amount of energy emitted, by the formation of the systems 
from a configuration in which the distances apart of the particles 
are infinitely great and in which the particles have no velocities 
relative to each other, is equal to the kinetic energy of the electrons 
in the final configuration. 

In analogy with the case of a single ring we are here led to 
assume that corresponding to any configuration of equiUbrium a 
series of geometrically similar, stationary configurations of the 
system will exist in which the kinetic energy of every electron is 
equal to the frequency of revolution multiplied by ixh where τ is 
an entire number and h Planck's constant. In any such series of 
stationary configurations the one corresponding to the greatest 
amount of energy emitted will be the one in which τ for every 
electron is equal to 1. Considering that the ratio of kinetic energy 
to frequency for a particle rotating in a circular orbit is equal to 
π times the angular momentum round the centre of the orbit, 
we are therefore led to the following simple generalization of the 
hypotheses mentioned in §3 and eariier in the present section. 

"/« any molecular system consisting of positive nuclei and electrons 
in which the nuclei are at rest relative to each other and the electrons 
move in circular orbits, the angular momentum of every electron 
round the centre of its orbit will in the permanent state of the system 
be equal to h/ln, where h is Planck's constant''^ 

In analogy with the considerations given a moment ago, we shall 

t In the considerations leading to this hypothesis we have assumed that the 
velocity of the electrons is small compared with the velocity of light. The limits 
of the validity of this assumption will be discussed in Part II. 



B O H R : THE C O N S T I T U T O N OF ATOMS A N D MOLECULES 159 

assume that a configuration satisfying this condition is stable if 
the total energy of the system is less than in any neighbouring 
configuration satisfying the same condition of the angular 
momentum of the electrons. 

As mentioned in the introduction, the above hypothesis will be 
used in a following communication as a basis for a theory of the 
constitution of atoms and molecules. It will be shown that it leads 
to results which seem to be in conformity with experiments on a 
number of diflFerent phenomena. 

The foundation of the hypothesis has been sought entirely in its 
relation with Planck's theory of radiation; by help of considera-
tions given later it will be attempted to throw some further light 
on the foundation of it from another point of view. 
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6 On the Excitation of the 
o 

2536 A Mercury Resonance Line 

b y Electron CoHisionsf 

J. F R A N C K A N D G . H E R T Z 

I T W A S shown in our experiments on coUisions between electrons 
and molecules of an inert gas or of a metal vapour that the 
electrons are reflected in such coUisions without loss of energy, 
as long as their kinetic energy does not exceed a certain critical 
magnitude, but that as soon as their energy becomes equal to the 
critical value, they lose aU of it on coUision. The critical velocity 
is a quantity, characteristic for each gas and is in the cases studied 
so far equal to the ionisation energy. ^ This result is completely in 
agreement with quantum theory since according to that theory the 
vibrations of the electrons in an atom can receive energy only in 
certain quanta and not in arbitrary amounts. The question 
whether, indeed, as foUows also from quantum theory, the smallest 
amount of energy which can be transmitted is equal to the product 
of Planck's constant h and the frequency ν of the electron receiving 
the energyj could only be decided with a certain amount of 
certainty for the case of mercury vapour. In the case of this 
vapour one has not only measured with relatively high accuracy 
the critical kinetic energy, but one also knows very probably the 
frequency of the vibrating electron as Wood's experiments^ on the 
mercury resonance radiation have proved that there is in every 
mercury atom an electron which can vibrate with a frequency 

t Verh. Dtsch. Phys. Ges. Berlin 1 6 , 512 (1914). 
i The hypothesis that the ionisation energy is equal to the product hv ha§ 

first been made by J. Stark. 
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corresponding to a wavelength of 2536 A. It turned out that the 
value measured by us corresponding to the smallest energy 
quantum which can be transferred agreed within the limits of 
accuracy with the product hv. 

To conclude with certainty from our results that the phenomena 
studied take place in agreement with quantum theory, we can, 
however, not restrict ourselves to proving that the energy is 
transferred only in certain quanta. Rather, it is still necessary to 
prove that the total energy quantum transferred, Av, is given to a 
single electron which can vibrate with frequency v. The aim of the 
present paper is to give this proof. 

As we emphasised in our earlier paper ^ the majority of coUisions 
which transfer to the vibrating electron an energy Av do not lead 
to ionisation. In the atoms which have undergone such colUsions, 
there is thus an electron of energy Av, vibrating with frequency v. 
One should, therefore, expect that such collisions which do not 
lead to ionisation but just to an energy loss Av should be accom-
panied by an emission of Ught of frequency v, that is, that one 
should be able to observe the emission of resonance radiation. 
This means that if one introduces electrons in mercury vapour and 
enables them to attain a velocity corresponding to a voltage 
difference of 4-9 Volt, one should be able to observe light emission 
corresponding exclusively to the emission of the mercury 2536 Ä 
resonance line. Experiments have fuUy confirmed this expectation. 

In Fig. 6.1 we give the apparatus used. The vessel was made of 
quartz; the bottom part and the two tubes at the bot tom were 
fiUed with mercury. A circular gas flame heated the apparatus to 
about 150°. The platinum wire D, which was heated by an 
electric current served as electron source. The platinum mesh Ν 
at the other side was connected to earth via a galvanometer, and 
we put a voltage to accelerate the electrons between the wire and 
the mesh. The soldering places which could not be avoided were, 
as far as possible, away from the heated parts of the apparatus 
and were cooled with water. We used a Fuess ultraviolet spectro-
graph kindly put at our disposal by Professor Goldstein to study 
the emitted radiation. 
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To the galvanometer 

To the pump 

F I G . 6.1 

We know from our earlier investigations that as soon as the 
applied voltage exceeds 4-9Voltt for carefully chosen values of 
pressure and voltage electrons occur with a velocity corresponding 
to a voltage of 4-9 Volt, but not with higher velocities. We can, 
however, not state with any certainty that no electrons of that 
velocity are present when the appHed voltage is lower than 
4-9 Volt as the electrons leave the platinum wire with a certain 

t A pressure of about 1mm and a field gradient of 2V/cm completely 
satisfy these conditions as is shown by the measurements on the velocity 
distribution of the electrons discussed in our earlier paper, i As soon as the 
electrons have attained a velocity corresponding to 4-9 Volt, one of the 
subsequent collisions will certainly lead to a complete loss of energy; along the 
few mean free paths which the electron can still traverse with the critical 
velocity, the increase of velocity is small compared to the critical velocity, 
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initial velocity which for the wires used goes up to about 1 Volt. 
The photographs obtained after exposing for one or two hours 
showed a continuous spectrum, stretching into the violet, caused 
by the light emitted by the incandescent wire, and then, a long 
distance away from it, clearly the 2536 Ä Hne; however, in no case 
was there even a suspicion of the other mercury lines which in the 
mercury arc spectrum have partially far greater intensities than 
the resonance Une. The identification of the Une was made by 
comparison with a wavelength scale built for the apparatus and 
also by imposing upon the spectrum the arc spectrum of mercury 
as a comparison spectrum. 

Figure 6.2 is such a photograph, ! taken when the potential 
applied to the electrons was 8 Volt. It shows clearly (we hope also 
in the reproduction) the appearance of the 2536 A resonance line. 
The intensity of the emitted light depends essentially on the value 
of the vapour pressure, as can be understood from Wood's results 
on the scattering and absorption of resonance radiation in mercury 
vapour. The best results were obtained for a temperature of about 
150° so that the vapour pressure of the mercury vapour is more 
than 1 mm. We have foUowed the appearance of the line, varying 
the experimental conditions for different applied voltages and we 
never saw a suspicion of the line for a potential less than the 
critical one; for instance, under the same conditions for 4Vol t 
there is no indication of the line, while it is clearly visible already 
for 6 Volt. 

As we have now shown that the energy quantum transferred is 
indeed exactly equal to Av, we can use an accurate measurement of 
this energy quantum for a determination of the value of the 
constant h which should not be less accurate than the determina-
tions of this constant based upon measurements of radiation. 
As apart from the measured potential difference, traversed by the 
electrons, only the elementary quantum and the wavelength of the 
resonance radiation enter into the calculations, one can in this 
way determine the quantity h with the same accuracy with which 
we can measure the critical velocity of the electrons. From our 

t Figure 6.2 is reproduced as a drawing, sketched from the original [D. t. H.]. 
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measurements we find A = 6-59 χ 10"^^ erg sec with a possible 
error of 2 percent, whereas the values of the radiation constant 
found by several observers differ by far more than 2 percent. 
If we use the Warburg^ value of the constant C2 of the radiation 
law, C2 = 1-437 cm degree and the Westphal"^ value of the constant 
σ in Stefan's law, σ = 5·57χ 10"^^ W a t t c m " M e g r e e ~ ^ we find 
A = 6*47 X 10"^^ erg sec. Using for σ the average value of the 
latest measurements, σ = 5-70 χ 10" ^^, we find h = 6-62 χ 10" 
Both values agree with ours within the limits given. 

These results lead to new questions, the answers to which will 
have to be given by later experiments, which we are to some extent 
preparing. The interesting experiments of Gehrcke and Seehger^ 
and of Holm^ show that the situation is far less simple for higher 
electron velocities. According to Gehrcke and Seeliger, even 
electrons of about 10 Volt excite visible light in mercury vapour. 
It would be of great interest to extend these investigations to the 
ultraviolet region. One should also investigate whether for other 
metal vapours and for the inert gases a similar radiation occurs 
the wavelength of which can be evaluated from the energy of the 
electrons which transfer the energy in inelastic collisions. The 
easiest would probably be to study alkali metal vapours. 

Summary 

The results of our two papers on the collisions between electrons 
and mercury atoms can be summarised as follows: 

1. The electrons are reñected by the mercury atoms without 
energy loss, as long as their kinetic energy is less than the amount 
hv, where ν is the frequency corresponding to the resonance 
line. 

2. As soon as the kinetic energy of an electron has reached the 
value hv, this energy quantum is transferred in one of the sub-
sequent collisions to the spectrum of frequency v, present in the 
atom. 

3. The energy transferred is partly used for ionisation and 
partly emitted as radiation of light with a frequency v. 



166 THE OLD QUANTUM THEORY 

References 

L G . F R A N C K and G . H E R T Z , Verh. D. Phys. Ges. 1 6 , 4 5 7 ( 1 9 1 4 ) . 

2 . R . W . W O O D , Physik. Zs. 1 3 , 3 5 3 (1912) . 

3 . E . W A R B U R G , G . L E I T H Ä U S E R , E . H U P K A and C . MtJLLER, Ann. Physik 4 0 , 

6 2 6 (1912) . 

4 . W , W E S T P H A L , Verh. D. Phys. Ges. 15 , 8 9 7 ( 1 9 1 3 ) . 

5. Ε. G E H R C K E and R . S E E L I G E R , Verh. D. Phys. Ges. 1 4 , 339 , 1 0 2 3 ( 1 9 1 2 ) . 

6 . R . H O L M , Physik. Zs. 15 , 2 8 9 (1914) . 

4. The quantity h turns out to be according to these experiments 
equal to 6-59 χ 10" erg sec with a possible error of 2 percent. 

Part of the apparatus used was bought from a grant from the 
Solvay Foundation, for which we express our gratitude. 



7 On the Quantum Theory of Radíatíony 

A. EINSTEIN 

T H E formal similarity of the curve of the chromatic distribution 
of black-body radiation and the Maxwell velocity-distribution is 
too striking to be hidden for long. Indeed, already Wien in his 
important theoretical paper in which he derived his displacement 
law 

ρ = v^/(v/T) (1) 

was led by this similarity to a further determination of the 
radiation formula. It is well known that he then found the 
formula 

ρ = αν^β-' '^/*^ (2) 

which is also nowadays accepted as being correct as a limiting law 
for large values of ν /Γ (Wien's radiation law). We know nowadays 
that no considerations based on classical mechanic* and electro-
dynamics can give us a usable radiation formula, and that classical 
theory necessarily leads to the Rayleigh formula 

. 4 " v = r . (3) 

As soon as Planck in his classical investigation based his radiation 
formula 

on the assumption of discrete elements of energy, from which very 

f Physikalische Zeitschrift 18,121 (1917). 
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quickly quantum theory developed, it was natural that Wien's 
discussion which led to equation (2) became forgotten. 

Recently^! I found a derivation of Planck's radiation formula 
which is based upon the basic assumption of quantum theory and 
which is related to Wien's original considerations; in this deriva-
tion, the relationship between the Maxwell distribution and the 
chromatic black-body distribution plays a role. This derivation 
is of interest not only because it is simple, but especially because 
it seems to clarify somewhat the at present unexplained phenomena 
of emission and absorption of radiation by matter. I have shown, 
on the basis of a few assumptions about the emission and absorp-
tion of radiation by molecules, which are closely related to 
quantum theory, that molecules distributed in temperature 
equilibrium over states in a way which is compatible with quantum 
theory are in dynamic equilibrium with the Planck radiation. 
In this way, I deduced in a remarkably simple and general manner 
Planck's formula (4). It was a consequence of the condition that 
the distribution of the molecules over the states of their internal 
energy, which is required by quantum theory, must be established 
solely through the absorption and emission of radiation. 

If the assumptions about the interaction between radiation and 
matter which we have introduced are essentially correct, they must, 
however, yield more than the correct statistical distribution of the 
internal energy of the molecules. In fact, in absorption and 
emission of radiation, momentum is transferred to the molecules; 
this entails that merely through the interaction of radiation and 
molecules the velocities of the molecules will acquire a certain 
distribution. This must clearly be the same velocity distribution 
as the one which the molecules attain through the action of their 
mutual collisions alone, that is, it must be the same as the Maxwell 
distribution. We must require that the average kinetic energy (per 
degree of freedom) which a molecule acquires in the Planck 
radiation field of temperature Τ is equal to ^kT\ this must be true 
independent of the nature of the molecules considered and 
independent of the frequencies of the light emitted or absorbed by 

t The considerations given in that paper are repeated in the present one. 
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1. Basic Hypothesis of Quantum Theory. 
Canonical Distribution over States 

According to quantum theory, a molecule of a given kind can 
take up—apart from its orientation and its translational motion— 
only a discrete set of states Z j , Z 2 , Z „ , . . . with (internal) energies 
ει, ε„, . . . . If molecules of this kind form a gas of temperature 
T, the relative occurrence W„ of these states Z„ is given by the 
formula giving the canonical distribution of statistical mechanics: 

W„ = Pne-^^^'^. (5) 

In this equation k = R/N is the well-known Boltzmann constant, 
and p„ a number which is characteristic for the molecule and its 

them. In the present paper, we want to show that our simple 
hypotheses about the elementary processes of emission and 
absorption obtain another support. 

In order to obtain the above-mentioned result we must, however, 
complete to some extent the hypotheses upon which our earlier 
work was based, as the earlier hypotheses were concerned only 
with the exchange of energy. The question arises: does the 
molecule receive an impulse when it absorbs or emits the energy ε ? 
Let us, for instance, consider the emission from the point of view 
of classical electrodynamics. If a body emits the energy ε, it 
receives a recoil (momentum) ε/c if all of the radiation ε is emitted 
in the same direction. If, however, the emission takes place as an 
isotropic process, for instance, in the form of spherical waves, 
no recoil at all occurs. This alternative also plays a role in the 
quantum theory of radiation. When a molecule during a transition 
from one quantum-theoretically possible state to another absorbs 
or emits energy ε in the form of radiation, such an elementary 
process can be thought of either as being a partially or completely 
directed or as being a symmetrical (non-directional) process. 
It now turns out that we arrive at a consistent theory only, if we 
assume each elementary process to be completely directional. 
This is the main result of the following considerations. 
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2. Hypotheses about Energy Exchange through Radiation 

Let Z„ and Z „ be two quantum-theoretically possible states of 
the gas molecule, and let their energies ε„ and satisfy the 
inequality > ε,,. Let the molecule be able to make a transition 
from the state Z„ to the state Z „ by absorbing radiative energy 
ε^ — ε„; similarly let a transition from to Z„ be possible in which 
this radiative energy is emitted. Let the frequency of the radiation 
absorbed or emitted by the molecule in such transitions be ν ; it is 
characteristic for the combination (m, n) of the indices. 

We make a few hypotheses about the laws valid for this 
transition; these are obtained by using the relations known from 
classical theory for a Planck resonator, as the quantum-theoretical 
relations which are as yet unknown. 

(a) Spontaneous emission,^ It is well known that a vibrating 
Planck resonator emits according to Hertz energy independent of 
whether it is excited by an external field or not. Accordingly, let 
it be possible for a molecule to make without external stimulation 
a transition from the state Z „ to the state Z„ while emitting the 
radiation energy ε^—ε„ of frequency v. Let the probability dW 
that this will in fact take place in the time interval dt be 

dW^A^dt, (A) 

t Einstein uses Ausstrahlung and Einstrahlung for spontaneous emission and 
induced radiation [D. t. H.]. 

nth quantum state and which is independent of T; it can be called 
the statistical "weight" of the state. One can derive equation (5) 
either from Boltzmann's principle or by purely thermodynamic 
means. Equation (5) expresses the greatest generalisation of 
Maxwell's velocity distribution law. 

Recent important progress in quantum theory relates to the 
theoretical determination of quantum theoretically possible states 
Z„ and their weight p„. For our considerations of the principles 
involved in radiation, we do not need a detailed determination of 
the quantum states. 
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where Al^ denotes a constant which is characteristic for the 
combination of indices considered. 

The statistical law assumed here corresponds to the law of a 
radioactive reaction, and the elementary process assumed here 
corresponds to a reaction in which only y-rays are emitted. It is 
not necessary to assume that this process takes place instan-
taneously; it is only necessary that the time this process takes is 
negligible compared with the time during which the molecule is 
in the state Z i , . . . . 

(b) Induced radiation processes. If a Planck resonator is in a 
radiation field, the energy of the resonator can be changed by the 
transfer of energy from the electromagnetic field to the resonator; 
this energy can be positive or negative depending on the phases of 
the resonator and of the oscillating field. Accordingly we intro-
duce the following quantum-theoretical hypothesis. Under the 
influence of a radiation density ρ of frequency ν a molecule can 
make a transition from the state Z„ to the state Z „ by absorbing 
the radiative energy ε^—ε„ and the probability law for this 
process is 

dW^B'Üpdt, (Β) 

Similarly, a transition Z ^ Z„ may also be possible under the 
influence of the radiation; in this process the radiative energy 
ε^—ε^ will be freed according to the probability law 

dW^Blpdt. (Β') 

The and are constants. These two processes we shall call 
"changes in state, induced by radiation". 

The question now arises: what is the momentum transferred to 
the molecule in these changes in state? Let us begin with the 
induced processes. If a radiation beam with a well-defined 
direction does work on a Planck resonator, the corresponding 
energy is taken from the beam. According to the law of conserva-
tion of momentum, this energy transfer corresponds also to a 
momentum transfer from the beam to the resonator. The 
resonator is thus subject to the action of a force in the direction 
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3. Derivation of the Planck Radiation Law 

We now ask for that radiation density ρ which must be present 
in order that the exchange of energy between radiation and 
molecules according to the statistical laws (A), (B), and (Β') does 

of the beam. If the energy transferred is negative, the action of 
the force on the resonator is also in the opposite direction. This 
means clearly the following in the case of the quantum hypothesis. 
If through the irradiation by a beam of light a transition Z„ 
is induced, the momentum (ßfn—s„)lc is transferred to the molecule 
in the direction of propagation of the beam. In the induced 
transition Z^-^Z„ the transferred momentum has the same 
magnitude but is in the opposite direction. We assume that in the 
case where the molecule is simultaneously subjected to several 
radiation beams, the total energy ε„ — ε„ of an elementary process 
is absorbed from or added to one of these beams, so that also 
in that case the momentum (e„--6„)/c is transferred to the 
molecule. 

In the case of a Planck resonator, when the energy is emitted 
through a spontaneous emission process, no momentum is trans-
ferred to the resonator, since according to classical theory the 
emission is in the form of a spherical wave. We have, however, 
already noted that we can only obtain a consistent quantum theory 
by assuming that the spontaneous emission process is also a 
directed one. In that case, in each spontaneous emission elemen-
tary process (Z„-^Z„) momentum of magnitude (fím~"0/^ is 
transferred to the molecule. If the molecule is isotropic, we must 
assume that all directions of emission are equally probable. If the 
molecule is not isotropic, we arrive at the same statement if the 
orientation changes in a random fashion in time. We must, of 
course, make a similar assumption for the statistical laws (B) and 
(Β') for the induced processes, as otherwise the constants should 
depend on direction, but we can avoid this through the assump-
tion of isotropy or pseudo-isotropy (through time-averaging) of 
the molecule. 
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not perturb the distribution (5) of the molecules. For this it is 
necessary and sufficient that on the average per unit time as many 
elementary processes of type (B) take place as of types (A) and 
(Β') combined. This combination leads, because of (5), (A), (B), 
and (Β'), to the following equation for the elementary processes 
corresponding to the index combination (m,n): 

Pne-'-l'^B^p = Pme-'-"^{Blp+Al\ 

If, furthermore, ρ will increase to infinity with T, as we shall 
assume, the following relation must exist between the constants 
^ - a n d ^ -

PnB: = p^Bl (6) 

We then obtain from our equation the following condition for 

dynamic equilibrium: 

This is the temperature-dependence of the radiation density of 
the Planck law. From Wien's displacement law (1) it follows from 
this immediately that 

| = av3, (8) 

and ε „ - ε „ = Αν, (9) 

where α and h are constants. To find the numerical value of the 
constant a, we should have an exact theory of the electrodynamic 
and mechanic processes; for the time being we must use the 
Rayleigh Hmit of high temperatures, for which the classical theory 
is valid as a Hmiting case. 

Equation (9) is, of course, the second main hypothesis of Bohr's 
theory of spectra of which we can now state after Sommerfeld's 
and Epstein's extensions that it belongs to those parts of our 
gcience which are sure. It contains implicitly, as I have shown, also 
the photochemical equivalence rule, 
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4. Method of Calculating the Motion of Molecules 
in the Radiation Field 

We now turn to the investigation of the motions which our 
molecules execute under the influence of the radiation. To do this, 
we use a method which is well known from the theory of Brownian 
motion, and which I have used already many times for numerical 
calculations of motion in radiation. To simplify the calculations, 
we only perform them for the case where the motion takes place 
only in one direction, the A'-direction of our system or coordinates. 
We shall moreover restrict ourselves to calculating the average 
value of the kinetic energy of the translational motion, and thus 
do not give the proof that these velocities ν are distributed accord-
ing to Maxwell's law. Let the mass Μ of the molecule be 
sufficiently large that we can neglect higher powers of v/c in 
comparison with lower ones; we can then apply ordinary 
mechanics to the molecule. Moreover, without any real loss of 
generality, we can perform our calculations aŝ  if the states with 
indices m and η were the only ones which the molecule can take on. 

The momentum Mv of a molecule is changed in two ways in 
the short time τ. Although the radiation is the same in all direc-
tions, because of its motion the molecule will feel a force acting 
in the opposite direction of its motion which comes from the 
radiation. Let this force be Rv, where is a constant to be 
evaluated later on. This force would bring the molecule to rest, 
if the irregularity of the action of the radiation did not have as a 
consequence that during the time τ a momentum A of varying sign 
and varying magnitude is transferred to the molecule; this 
unsystematic influence will against the earlier mentioned force 
maintain a certain motion of the molecule. At the end of the 
short time τ, which we are considering, the momentum of the 
molecule will have the value 

Mv-RvT + A. 

As the velocity distribution must remain the same in time, this 
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quantity must have the same average absolute magnitude as Mv; 
therefore, the average squares of those two quantities, averaged 
over a long period or over a large number of molecules, must be 
equal to one another: 

(Μν-Κντ-^Αγ = (Μν)\ 

As we have separately taken into account the systematic 
influence of ν on the momentum of the molecule, we must neglect 
the average Av. Expanding the left-hand side of the equation, 
we get then 

A^=2RMvh. (10) 

The average v^ for our molecules, which is caused by radiation 
of temperature Τ through its interaction with the molecules must 
be equal to the average value v^, which according to the kinetic 
theory of gases a molecule in the gas would have according to the 
gas laws at the temperature T. Otherwise, the presence of our 
molecules would disturb the thermodynamic equilibrium between 
black-body radiation and any gas of the same temperature. 
We must then have 

^M? = ikT. (11) 

Equation (10) thus becomes 

— = 2RkT. (12) 

The investigation must now proceed as follows. For given 
radiation [p(v)] we can calculate and R with our hypotheses 
about the interaction between radiation and molecules. Inserting 
these results into (12), this equation must be satisfied identically 
if ρ as function of ν and Tis expressed by the Planck equation (4). 

5. Calculation of 7? 

Let a molecule of the kind considered move uniformly with 
velocity ν along the X-axis of the system of coordinates K. We ask 
for the average momentum transferred by the radiation to the 
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molecule per unit time. To be able to evaluate this, we must 
consider the radiation in a system of coordinates K' which is at 
rest relative to the molecule under consideration, because we have 
only formulated our hypotheses about emission and absorption 
for molecules at rest. The transformation to the system K' has 
often been given in the literature and especially accurately in 
Mosengeil's BerUn thesis.^ For the sake of completeness, I shall, 
however, repeat the simple considerations. 

In i^ the radiation is isotropic, that is, we have for the radiation 
per unit volume in a frequency range dv and propagating in a 
direction within a given infinitesimal solid angle dK: 

, dK 

p d v - , (13) 

where ρ depends only on the frequency v, but not on the direction. 
This particular radiation corresponds in the coordinate system 
to a particular radiation, which is also characterised by a frequency 
range dv' and a certain solid angle dK\ The volume density of this 
particular radiation is 

dK' 

ρΧν',φΟ^ν' — . (13') 

This defines p ' . It depends on the direction which is defined in 
the usual way by the angle φ' with the Z'-axis and the angle φ' 
between the projection in the y 'Z'-plane with the 7'-axis. These 
angles correspond to the angles φ and ψ which in a similar manner 
fix the direction of dK with respect to K. 

First of all it is clear that the same transformation law must be 
valid between (13) and (13') as between the squares of the 
ampHtude and A'^ofa, plane wave of the appropriate direction 
of propagation. Therefore in the approximation we want, we have 

ρ'(ν',φ')άν'ακ' υ 
— = 1 - 2 - ο ο 8 ψ , (14) 

p(y)dvdK c 

or ρΧν',φ') = p ( v ) ^ , ^ [ l - 2 ^ c o s < ^ | (14') 
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The theory of relativity further gives the following formulae, 
valid in the approximation needed here. 

v' = v( 1—cos φ ) , 

V V 
cos 0 ' = cos φ h - cos Φ, 

c c 

From (15) in the same approximation it follows that 

/ V \ 
V = νΊ l + - c o s 0 ' . 

V ^ / 
Therefore, also in the same approximation. 

p(v) = ρ / + % ' c o s ^ ' ^ . 

or p(v) = p(vΉ^-v'cosφ\ 
dv c 

Furthermore from (15), (16), and (17) we have 

— = l-l·-cosφ\ 
dv' c 

dK ^ sin φ dφdψ _ d(cosφ) . 

di? ~ ήηφ^ΐφ^' ^ d ( c o s 0 0 ^ ^'^-^^^Ψ' 

Using these two relations and (18), we get from (14') 

ρ(ν\ΦΊ = p(vH%'cosφ'^'^'^' 
dv 

/ V \ 

1 — 3 - c o s 0 ' 

(15) 

(16) 

(17) 

(18) 

(19) 

From (19) and our hypothesis about the spontaneous emission 
and the induced processes of the molecule, we can easily calculate 
the average momentum transferred per unit time to the molecule. 
Before doing this we must, however, say something to justify the 
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method used. One can object that the equations (14), (15), and 
(16) are based upon Maxwell's theory of the electromagnetic field 
which is incompatible with quantum theory. This objection, 
however, touches the form rather than the essence of the matter. 
Whatever the form of the theory of electromagnetic processes, 
surely in any case the Doppler principle and the aberration law 
will remain valid, and thus also equations (15) and (16). Further-
more, the vaUdity of the energy relation (14) certainly extends 
beyond that of the wave theory; this transformation law is, for 
instance, also valid according to the theory of relativity for the 
energy density of a mass having an infinitesimal rest mass and 
moving with (quasi-) light-velocity. We can thus claim the validity 
of equation (19) for any theory of radiation. 

The radiation corresponding to the spatial angle άκ' will 
according to (B) lead per second to 

induced elementary processes of the type Z^-^Z^, provided the 
molecule is brought back to the state Z„ immediately after each 
such elementary process. In reality, however, the time spent per 
second in the state Z,, is according to (5) equal to 

^Vne 

where we used the abbreviation 

5 = p„e-^"/*^ + p ,e -* - /*^ . (20) 

In actual fact the number of these processes per second is thus 

1 άκ' 

In each process the momentum 

COS0' 
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is transferred to the molecule in the direction of the positive 
X'-axis. Similarly, we find, using (Β') that the corresponding 
number of induced elementary processes of the kind Z „ ->Z„ per 
second is 

1 die' 
-ρ^β-'-Ί'-'ΒΙρχν,φ')—, 

and in each such elementary process the momentum 

_!!!LZi"cos0' 
c 

is transferred to the molecule. The total momentum transferred 
per unit time to the molecule through induced processes is thus, 
taking (6) and (9) into account, 

where the integration is over all elements of solid angle. Perform-
ing the integration we get, using (19), the value 

Here we have denoted the frequency involved by ν (instead 
of v'). 

This expression represents, however, the total average momen-
tum transferred per unit time to a molecule moving with a 
velocity v\ because it is clear that the spontaneous emission 
processes which take place without the action of radiation do not 
have a preferential direction, considered in the system K\ so that 
they can on average not transfer any momentum to the molecule. 
We obtain thus as the final result of our considerations: 

R = ^ ( p - i v | ) p „ 5 : . - - / * ' - ( l - . - ' " / * ^ ) . (21) 
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6. Calculation of 

It is much simpler to calculate the influence of the irregularity 
of the elementary processes on the mechanical behaviour of the 
molecule, as we can base this calculation on a molecule at rest in 
the approximation which we have used from the start. 

Let some event lead to the transfer of a momentum λ in the 
Jf-direction to a molecule. Let this momentum have varying sign 
and varying magnitude in different cases, but let there be such a 
statistical law for λ that the average value of λ vanishes. Let now 
A1, ^ 2 , . . . be the values of the momentum in the A^-direction trans-
ferred to the molecule through several, independently acting causes 
so that the resultant transfer of momentum Δ is given by 

Δ = ΣΛ,. 

As the average value λ „ vanishes for the separate we must 
have 

Δ^ = Σ λ ! . (22) 

If the averages λ ΐ of the separate momenta are equal to one 

another ( = A ^ ) , and if / is the total number of momentum trans-

ferring processes, we have the relation 

Δ^ = ñ \ (22a) 

According to our hypothesis in each elementary process, 
induced or spontaneous, the momentum 

;i = — cos φ 
c 

is transferred to the molecule. Here φ is the angle between the 
X-axis and a direction chosen randomly. Therefore we have 



EINSTEIN: THE QUANTUM THEORY OF RADIATON 181 

We get from (23), (24), and (22) 

τ ~3S 
^ ^ ^ Y p „ 5 > - - / ^ - p . (25) 

7. Results 

To prove now that the momenta transferred by the radiation to 

the molecules in accordance with our hypotheses never disturb the 

thermodynamic equilibrium, we only need to substitute the values 

(25) and (21) for Δ^/τ and R which we have calculated after we 

have used (4) to replace in (21) the quantity 

by phvßkT, It then turns out immediately that our fundamental 
equation (12) is identically satisfied. 

The considerations which are now finished give strong support 
for the hypotheses given in Section 2 about the interaction between 
matter and radiation through absorption and emission processes, 
that is, through spontaneous and induced radiation processes. 
I was led to these hypotheses by my attempt to postulate as simply 
as possible a quantum theoretical behaviour of the molecules 
which would be similar to the behaviour of a Planck resonator of 
the classical theory. I obtained then in a natural fashion from the 
general quantum assumption for matter the second Bohr rule 
(equation (9)) as well as the Planck radiation formula. 

As we assume that we may take all elementary processes which 
take place to be independent of one another, we may apply (22a). 
In that case, / is the number of all elementary processes taking 
place during the time τ. This is twice the number of the number 
of induced processes Z„ -> during the time τ. We have thus 

/ = | ρ „ 5 - β - " / * ν τ . (24) 
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The most important resuh seems to me, however, to be the one 
about the momentum transferred to the molecule in spontaneous 
or induced radiation processes. If one of our assumptions about 
this momentum transfer is changed, this would lead to a violation 
of equation (12); it seems hardly possible to remain in agreement 
with this relation which is required by the theory of heat otherwise 
than on the basis of our assumptions. We can thus consider the 
following as rather certainly proved. 

If a ray of light causes a molecule hit by it to absorb or emit 
through an elementary process an amount of energy hv in the form 
of radiation (induced radiation process), the momentum hvjc is 
always transferred to the molecule, and in such a way that the 
momentum is directed along the direction of propagation of the 
ray if the energy is absorbed, and directed in the opposite direc-
tion, if the energy is emitted. If the molecule is subjected to the 
action of several directed rays of light, always only one of them 
will participate in an induced elementary process; this ray alone 
defines then the direction of the momentum transferred to the 
molecule. 

If the molecule undergoes a loss of energy of magnitude hv 
without external influence, by emitting this energy in the form of 
radiation (spontaneous emission), this process is also a directed 
one. There is no emission in spherical waves. The molecule 
suffers in the spontaneous elementary process a recoil of magnitude 
hvjc in a direction which is in the present state of the theory 
determined only by "chance". 

These properties of the elementary processes required by 
equation (12) make it seem practically unavoidable that one must 
construct an essentially quantum theoretical theory of radiation. 
The weakness of the theory lies, on the one hand, in the fact that 
it does not bring any nearer the connexion with the wave theory 
and, on the other hand, in the fact that it leaves moment and 
direction of the elementary processes to "chance"; all the same, 
I have complete confidence in the reliability of the method used 
here. 

Still one more general remark may be made here. Practically 
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OQT 

all theories of black-body radiation are based on a consideration 
of the interaction between radiation and molecules. However, in 
general one restricts oneself to considering energy-exchange, 
without taking momentum-exchange into account. One feels 
easily justified in this as the smallness of the momenta transferred 
by the radiation entails that these momenta are practically always 
in reahty negligible compared to other processes causing a change 
in motion. However, for the theoretical discussion, these small 
actions must be considered to be completely as important as the 
obvious actions of the ewer^j-exchange through radiation, as 
energy and momentum are closely connected; one can, therefore, 
consider a theory to be justified only when it is shown that 
according to it the momenta transferred by the radiation to the 
matter lead to such motion as is required by the theory of heat. 
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8 On the Connexion between the 

Completion of Electron Groups in an 

Atom with the Complex Structure of 

Spectrat 

W . P A U L I 

E S P E C I A L L Y in connexion with Millikan and Landé's observation that the 
alkali doublet can be represented by relativistic formulae and with results 
obtained in an earlier paper, it is suggested that this doublet and its anomalous 
Zeeman effect expresses a classically non-describable two-valuedness of the 
quantum theoretical properties of the optically active electron,! without any 
participation of the closed rare gas configuration of the atom core in the form 
of a core angular momentum or as the seat of the magneto-mechanical 
anomaly of the atom. We then attempt to pursue this point of view, taken as a 
temporary working hypothesis, as far as possible in its consequences also for 
atoms other than the alkali atoms, notwithstanding its difficulties from the 
point of view of principle. First of all it turns out that it is possible, in contrast 
to the usual ideas, to assign for the case of a strong external magnetic field, 
which is so strong that we can neglect the coupling between the atomic core 
and the optically active electrons, to those two systems, as far as the number 
of their stationary states, the values of their quantum numbers, and their 
magnetic energy is concerned, no other properties than those of the free atomic 
core of the optically active electron of the alkalis. On the basis of these results 
one is also led to a general classification of every electron in the atom by the 
principal quantum number η and two auxiliary quantum numbers ki and k2 
to which is added a further quantum number mi in the presence of an external 
field. In conjunction with a recent paper by E . C. Stoner this classification 
leads to a general quantum theoretical formulation of the completion of 
electron groups in atoms. 

t Z . Physik 3 1 , 765 (1925). A few footnotes have been omitted in this 
translation. 

i In German: Leuchtelektron. 
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1. The Permanence of Quantum Numbers (Principle of 
Gradual Construction)! in Complex Structures and the 
Zeeman Effect 

In a previous paper ^ it was emphasised that the usual ideas, 
according to which the inner, completed electron shells of an atom 
play an essential part in the complex structure of optical spectra 
and their anomalous Zeeman effect in the shape of core angular 
momenta and as the real seat of the magneto-mechanical anomaly, 
are subject to several serious difficulties. It seems therefore 
plausible to set against these ideas that especially the doublet 
structure of the alkali spectra and their anomalous Zeeman effect 
are caused by a classically undescribable two-valuedness of the 
quantum theoretical properties of the optically active electron. 
This idea is particularly based upon the results of Millikan and 
Lande that the optical doublets of the alkalis are similar to the 
relativity doublets in X-ray spectra and that their magnitude is 
determined by a relativistic formula. 

If we now pursue this point of view, we shall assign—as was 
done by Bohr and Coster for the X-ray spectra—to the stationary 
states of the optically active electron involved in the emission of 
the alkali spectra two auxiliary quantum numbers ki and k2 as 
well as the principal quantum number n. The first quantum 
number (usually simply denoted by k) has the values 1,2, 3 , . . . 
for the s,p,d,... terms and changes by unity in the allowed transi-
tion processes; it determines the magnitude of the central force 
interaction forces of the valence electron with the atom core. 
The second quantum number k2 is for the two terms of a doublet 
(e.g., Pi andP2) equal to fci - 1 and k^, in the transition processes 
it changes by ± 1 or 0 and determines the magnitude of the 
relativity correction (which is modified according to Lande to 
take into account the penetration of the optically active electron 
in the atom core). If we follow Sommerfeld to define the total 
angular momentum quantum number j of an atom in general as 

t i n German: Aufbauprinzip. 
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the maximum value of the quantum number (usually simply 
denoted by m) which determines the component of the angular 
momentum along an external field, we must put j = k2 — i for the 
alkalis. The number of stationary states in a magnetic field for 
given fci and ^ 2 is 2 / + 1 = 2/^2, and the number of these states for 
both doublet terms with given is altogether 2(2/:^ - 1 ) . 

If we now consider the case of strong field (Paschen-Back 
effect), we can introduce apart from k^ and the just mentioned 
quantum number m^, instead of also a magnetic quantum 
number m2 which determines directly the energy of the atom in the 
magnetic field, that is, the component of the magnetic moment of 
the valence electron parallel to the field. For the two terms of the 
doublet it has, respectively, the values 4-i and — i . Just as 
in the doublet structure of the alkali spectra the "anomaly of the 
relativity correction'* is expressed (the magnitude of which is 
mainly determined by another quantum number, as is the 
magnitude of the central force interaction energy of the optically 
active electron and the atom core), so appears in the deviations of 
Zeeman structure from the normal Lorentz triplet the "magneto-
mechanical anomaly" which is similar to the other anomaly (the 
magnitude of the magnetic moment of the optically active electron 
is mainly determined by another quantum number, as is the 
angular momentum). Clearly, the appearance of half-odd-integral 
(effective) quantum numbers and the thereby formally caused 
value ^ = 2 of the splitting factor of the ^--term of the alkaHs is 
closely connected with the two-foldness of the energy level. 
We shall here, however, not attempt a more detailed theoretical 
analysis of this state of affairs and use the following considerations 
of the Zeeman effect of the alkalis as empirical data. 

Without worrying about the difficulties encountered by our 
point of view, which we shall mention presently, we now try to 
extend this formal classification of the optically active electron by 
four quantum numbers /i, fci, k2, to atoms, more complex than 
the alkalis. / / now turns out that we can retain completely on the 
basis of this classification the principle of permanence of quantum 
numbers (Auf bauprinzip) also for the complex structure of the 
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spectra and the anomalous Zeeman effect in contrast to the usual 
ideas. This principle, due to Bohr, states that when a further 
electron is added to a—possibly charged—atom, the quantum 
numbers of the electrons which are already bound to the atom 
retain the same values as correspond to the appropriate state of 
the free atom core. 

Let us first of all consider the alkaline earths. The spectrum 
consists in this case of a singlet and a triplet system. The quantum 
states with a well-defined value of the quantum number of the 
optically active electron correspond then for the first system to 
altogether \{2k^ — 1) and in the last system to ?>{2k^ — 1) stationary 
states in an external magnetic field. U p to now this was inter-
preted as meaning that in strong fields the optically active electron 
in each case could take up 2ki — 1 positions, while the atom core 
was able to take up in the first case one, and in the last case three 
positions. The number of these positions is clearly different from 
the number 2 of the positions of the free atom core (alkali-like 
¿•-term) in a field. Bohr^ called this state of affairs a "const ra in t"! 
which is not analogous to the action of external fields of force. 
Now, however, we can simply interpret the total A{2k^ — 1) states 
of the atom as meaning that the a tom core always has two 
positions in a field, and the optically active electron as for the 
alkalis 2 ( 2 f c i - l ) states. 

More generally, a branching rule formulated by Heisenberg and 
Lande ^ states that a stationary state of the atom core with Ν states 
in a field leads through the addition of one more electron to two 
systems of terms, corresponding to altogether (7V+ 1)(2Ä:I — 1) and 
(Λ'̂ — \)(2k^ — 1) states in a field, respectively, for a given value of 
the quantum number k^ of the last electron. According to our 
interpretation, the 2N{2k^ — \) states of the complete atom in a 
strong field come about through Ν states of the atom core and 
2(2k^ — \) states of the optically active electron. In the present 
quantum theoretical classification of the electrons the term 
multiplicity required by the branching rule is simply a consequence 
of the "Auf bauprinzip". According to the ideas presented here 

t In German: Zwang. 
7 · OQT 
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m i = I m i , m2 = Σm2. (1) 

The latter can independently run through all values corresponding 
to the values of the angular momentum quantum numbers and 
^ 2 of the electrons in the stationary state of the atom considered. 
(m¡oh is here thus the part of the energy of the atom proportional 
to the field strength; o = Larmor frequency.) 

Let us consider as an example the two j- terms (singlet- and 
triplet 5-term) of the alkaline earths. To begin with it is sufficient 
to consider only the two valence electrons, as the contribution of 
the other electrons to the sums in (1) vanish when taken together. 
According to our general assumption we must for each of the two 
valence electrons take (independently of the other electron) the 
values = — J, ^ 2 = — 1 and m^ = i, m2 = I of the Merms of 
the alkaUs. According to (1) we then get the following values for 
the quantum numbers m^ and W 2 of the total a tom: 

^ = - i - i . - K i . + i - i . + i + i 

^ = - 1 - 1 , - 1 + 1 , 1 - 1 , 1 + 1, 

Bohr's constraint expresses itself not in a violation of the per-
manence of quantum numbers when the series electron is coupled 
to the atom core, but only in the peculiar two-valuedness of the 
quantum theoretical properties of each electron in the stationary 
states of an atom. 

We can, however,from this point of view use the ''Aufbauprinzip'' 
to calculate not only the number of stationary states, but also 
the energies in the case of strong fields (at least that part which is 
proportional to the field) additively from those of the free atom core 
and of the optically active electron, where the latter can be taken 
from the alkali spectra. Because, in this case, both the total 
component m^ of the angular momentum of the atom along the 
field (in units ft) as well as the component m2 of the magnetic 
moment of the atom in the same direction (in Bohr magnetons) 
are equal to the sum of the quantum numbers m^ and m2 of the 
single electrons : 
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or 

/Ml = — 1 0 1 

OT^= - 2 0 , 0 2 

ICorresponding to one term with 7 = 0 and one with j= \ in 
weak fields.lt To obtain the /?-, d-,.., terms of the alkaline earths, 
one must combine in (1) the unchanged contribution of the first 
valence electron (5- term) in an appropriate manner with the / W i -
and W2-values of the /?-, d-, ... terms of the alkalis for the second 
electron. 

The rule (1) leads in general exactly to the procedure for 
calculating the energy values in strong field proposed recently by 
Landé^ which has been shown by this author to give correct 
results also in complicated cases. According to Lande this 
procedure leads, for instance, to the correct Zeeman terms of neon 
(at least in the case of strong fields) if one assumes^ that in the 
a tom core there is one active electron in a p-term (instead of in an 
.s-term as above) and if one lets the optically active electron go 
through s-,p-, d-,f-,... terms. 

This result now suggests that we characterise in general each 
electron in an atom not only by a principal quantum number n, but 
also by the two auxiliary quantum numbers and ^ 2 , even when 
several equivalent electrons or completed electron groups are 
present. Moreover, we shall allow (also in the just-mentioned 
cases) in our thoughts such a strong magnetic field that we can 
assign to each electron, independently of the other electrons not only 
the quantum numbers η and k^, but also the two quantum numbers 

and m2 (where the last one determines the contribution of the 

t One notes that one must assign to the two cases mi = for the first and 
m 2 = i for the second electron, or mi = H-^ for the first and m 2 = ~i for the 
second electron two different terms (as far as the part of the energy indepen-
dent of the field is concerned). This is perhaps a blemish of the classification 
given here. It will later on, however, turn out that if the inner and the outer 
valence electron are equivalent, these two terms are in fact identical. 

t The replacement here of a seven-shell (atom core of neon) by o n e electron 
will be given a theoretical basis in the next section. 

http://fields.lt
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electron to the magnetic energy of the atom). The connexion 
between ^ 2 ^2 fo "̂ given and must be taken from the 
alkali spectra. 

Before we apply in the next section this quantum theoretical 
classification of the electrons in an atom to the problem of the 
completion of the electron groups, we must discuss in more detail 
the difficulties encountered by the here-proposed ideas of the 
complex structure and the anomalous Zeeman effect and the 
limitations of the meaning of our ideas. 

First of all, these ideas do not pay proper regard to the, in many 
respects independent, separate appearance of the different term 
systems (e.g., the singlet and the triplet systems of the alkaline 
earths), which also play a role in the position of the terms of these 
systems and in the Lande interval rule. Certainly, one cannot 
assume two different causes for the energy differences of the 
triplet levels of the alkaline earths, both the anomaly of the 
relativity correction of the optically active electron and the 
dependence of the interaction between the electron and the atom 
core on the relative orientation of these two systems. 

A more serious difficulty, raising a matter of principle, is how-
ever the connexion of these ideas with the correspondence 
principle which is well known to be a necessary means to explain 
the selection rules for the quantum numbers ki,j, and m and the 
polarisation of the Zeeman components. It is, to be sure, not 
necessary according to this principle to assign in a definite 
stationary state to each electron an orbit uniquely determined in 
the sense of usual kinematics; however, it is necessary that the 
totaHty of the stationary states of an atom corresponds to a 
collection (class) of orbits with a definite type of periodicity 
properties. In our case, for instance, the above-mentioned 
selection and polarisation rules require according to the corre-
spondence principle a kind of motion corresponding to a central 
force orbit on which is superposed a precession of the orbital 
plane around a definite axis of the atom to which is added in weak 
external magnetic fields also a precession around an axis through 
the nucleus in the direction of the field. The dynamic explanation 
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of this kind of motion of the optically active electron, which was 
based upon the assumption of deviations of the forces between the 
atom core and the electron from central symmetry, seems to be 
incompatible with the possibility to represent the alkaH doublet 
(and thus also the magnitude of the corresponding precession 
frequency) by relativistic formulae. The situation with respect to 
the kind of motion in the case of strong fields is similar. 

The difficult problem thus arises how to interpret the appearance 
of the kind of motion of the optically active electron which is 
required by the correspondence principle independently of its special 
dynamic interpretation which has been accepted up to now but which 
can hardly be retained. There also seems to be a close connexion 
between this problem and the question of the magnitude of 
the term values of the Zeeman effect (especially of the alkali 
spectra). 

As long as this problem remains unsolved, the ideas about the 
complex structure and the anomalous Zeeman effect suggested 
here can certainly not be considered to be a sufficient physical 
basis for the explanation of these phenomena, especially as they 
were in many respects better reproduced in the usually accepted 
point of view. It is not impossible that in the future one will 
succeed in merging these two points of view. In the present state 
of the problem it seemed of interest to us to pursue as far as 
possible also the first point of view to see what its consequences 
are. This is the sense in which one must consider our discussions 
in the next section of the application of the tentative point of view 
presented here to the problem of the completion of electron groups 
in an atom, notwithstanding the objections which can be made 
against it. We shall here draw conclusions only about the number 
of possible stationary states of an atom when several equivalent 
electrons are present, but not about the position and relative order 
of the term values. 
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2 . On a General Quantum Theoretical Rule for the Possibility 
of the Occurrence of Equivalent Electrons in an Atom 

It is well known that the appearance of several equivalent 
electrons, that is, electrons which are fully equivalent both with 
respect to their quantum numbers and with respect to their bind-
ing energies, in an atom is possible only under special circum-
stances which are closely connected with the regularities of the 
complex structure of spectra. For instance, the ground state of 
the alkaHne earths in which the two valence electrons are equivalent 
corresponds to a singlet .S-term, while in those stationary states 
of the atom which belong to the triplet system the valence electrons 
are never bound equivalently, as the lowest triplet 5-term has a 
principal quantum number exceeding that of the ground state by 
unity. Let us now as second example consider the neon spectrum. 
This consists of two groups of terms with different series limits, 
corresponding to different states of the atom core. The first group, 
belonging to the removal of an electron with the quantum 
numbers fcj = 2, ^2 = 1 froi^^ the atom core can be considered to 
be composed of a singlet and a triplet system, while the second 
group, belonging to the removal of an electron with ki= k2 = 2 
from the atom core, can be said to be a triplet and quintet system. 
The ultraviolet resonance lines of neon have not yet been observed, 
but there can hardly be any doubt that the ground state of a 
Ne-atom must be considered to be a /7-term as far as its combina-
tion with the known excited states of the atom is concerned; 
in accordance with the unique definiteness and the diamagnetic 
behaviour of the inert gas configuration there can be only one such 
term, namely with the value J = 0 . | As the only /7-terms with 7 = 0 
are the (lowest) triplet terms of the two groups, we can thus 
conclude that for Ne for the value 2 of the principal quantum 
number only those two triplet terms exist and moreover are 
identical for both groups of terms. 

In general we can thus expect that for those values of the quantum 

t As already indicated, the value of j is defined here and henceforth as the 
maximum value of the quantum number mi. 
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numbers η and for which already some electrons are present in the 
atom, certain multiplet terms of spectra are absent or coincide. The 
question arises what quantum theoretical rules decide this 
behaviour of the terms. 

As is already clear from the example of the neon spectrum, this 
question is closely connected with the problem of the completion 
of electron groups in an atom, which determines the lengths 
2, 8, 18, 32 , . . . of the periods in the periodic table of the elements. 
This completion consists in that an «-quantum electron group 
neither through emission or absorption of radiation nor through 
other external influences is able to accept more than 2n^ electrons. 

It is well known that Bohr in his theory of the periodic table, 
which contains a uniñed summary of spectroscopic and chemical 
data and especially a quantum theoretical basis for the occurrence 
of chemically similar elements such as the platinum and iron 
metals and the rare earths in the later period of the table, has 
introduced a subdivision of these electron groups into subgroups. 
By characterising each electron in the stationary states of the a tom 
by analogy with the stationary states of a central force motion by 
a symbol n^ with ^ «, he obtained in general for an electron 
group with a value η of the principal quantum number η sub-
groups. In this way Bohr was led to the scheme of the structure 
of the inert gases given in Table 1. He has, however, emphasised 
himself^ that the equality, assumed here, of the number of 
electrons in the different subgroups of a maingroup is highly 
hypothetical and that for the time being no complete and satisfying 
theoretical explanation of the completion of the electron groups in 
the atom, and especially of the period lengths 2, 8, 18, 32 , . . . in the 
periodic table could be given. 

Recently essential progress was made in the problem of the 
completion of the electron groups in an atom by the considera-
tions of E. C. Stoner.^ This author suggests first of all a scheme 
for the atomic structure of the inert gases in which in contrast to 
Bohr no opening of a completed subgroup is allowed by letting 
other electrons of the same main group be added to it, so that the 
number of electrons in a closed subgroup depends only on the 
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value of k, but not on the value of n, that is, on the existence of 
other subgroups in the same main group. This means already a 
large simplification which could, moreover, be supported by 
several experimental data. One must here assume ίοτ k= \ two, 
for A: = 2 six, for A: = 3 ten, and in general for a given value of k 
2(2fc - l ) electrons in the closed state of the corresponding sub-
group to remain in agreement with the empirically known 
numbers of electrons in the inert gases. 

Stoner remarked further that these numbers of electrons agree 
with the number of the stationary states of the alkali atoms in an 
external field for the given value of k. He therefore pushes further 
the analogy with the stationary states of the alkali spectra by 
assuming a further subdivision of the subgroups, corresponding to 
the complex structure of these spectra (and of the X-ray spectra), 
which are characterised by the two numbers k^ and k 2 , where k^ 
is the same as Bohr's k, while we must put ki = k^ — l οτ k2 = k^ 
(except for = 1, where in accordance with the simple nature of 
the 5-term, k2 = 1 only). Corresponding to the number 2¿2 of the 
stationary states into which a stationary state of an alkali atom 
with given values of the quantum numbers k^ and k2 decomposes 
in an external field, Stoner assumes 2k2 electrons in a completed 
part-subgroup corresponding to the quantum numbers w, /τι, ¿ 2 · 
Table 2 gives the scheme of the atomic structure of the inert 
gases, to which Stoner was led in this way. 

We can now make this idea of Stoner's more precise and more 
general, if we apply the ideas about the complex structure of the 
spectra and the anomalous Zeeman effect, discussed in the 
previous section, to the case where equivalent electrons are 
present in an atom. In that case we arrived, on the basis of an 
attempt to retain the permanence of quantum numbers, at a 
characterisation of each electron in an atom by both the principal 
quantum number η and the two auxiliary quantum numbers ki 
and k 2 . In strong magnetic fields also an angular momentum 
quantum number m^ was added to this for each electron and, 
furthermore, one can use apart from and mi also a magnetic 
moment quantum number ^ 2 , instead of k 2 . First of all, we see 
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that the use of the two quantum numbers ki and ¿2 for each 
electron is in excellent agreement of Stoner's subdivision of Bohr's 
subgroup.f Secondly, by considering the case of strong magnetic 
fields we can reduce Stoner's result, that the number of electrons 
in a completed subgroup is the same as the number of the corre-
sponding terms of the Zeeman effect of the alkali spectra, to the 
following more general rule about the occurrence of equivalent 
electrons in an a tom: 

There can never be two or more equivalent electrons in an atom 
for which in strong fields the values of all quantum numbers n, k^, 
kzff^i (or, equivalently, n,ki,mi, m2) are the same. If an electron 
is present in the atom for which these quantum numbers (in an 
external field) have definite values, this state is "occupied"'. 

We must bear in mind that the principal quantum number occurs 
in an essential way in this rule; of course, several (not equivalent) 
electrons may occur in an atom which have the same values of the 
quantum numbers k^, k2, m^, but have different values of the 
principal quantum number n. 

We cannot give a further justification for this rule, but it seems 
to be a very plausible one. It refers, as mentioned, first of all to 
the case of strong fields. However, from thermodynamic argu-
ments (invariance of statistic weights under adiabatic transforma-
tions of the system) J it follows that the number of stationary states 
of an atom must be the same in strong and weak fields for given 
values of the numbers k^ and k2 of the separate electrons and a 
value of m^ = Σ (see (1)) for the whole atom. We can therefore 
also in the latter case make definite statements about the number 
of stationary states and the corresponding values of j (for a given 

t It follows directly from Millikan and Landé's results about the relativistic 
doublets of the X-ray spectra that this subdivision and the question about the 
number of electrons in the part-subgroups also makes sense for completed 
electron groups. These numbers appear clearly in the expression for the 
energy of the whole groups as function of the order number in the shape of 
factors of the Moseley-Sommerfeld expressions involving definite values of 
the screening numbers (determined by ki) and the relativity correction 
(determined by kz). 

Í This invariance is independent of the validity of classical mechanics under 
the transformation. 
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number of equivalent electrons belonging to different values of 
ki and k2). We can thus find the number of possibilities of 
realising various incomplete electron shells and give an un-
ambiguous answer to the question posed at the beginning of this 
section about the absence or coincidence of certain multiplet 
terms in spectra for values of the principal quantum number for 
which several equivalent electrons are present in an atom. We can, 
however, only say something about the number of terms and the 
values of their quantum numbers, but not about their magnitude 
and about interval relations. 

We must now show that the consequences of our rule agree with 
experiment in the simplest cases. We must wait and see whether 
it will also prove itself in comparison with experiment in more 
complicated cases or whether it will need modifications in that 
case; this will become clear when compUcated spectra are sorted out. 

First of all, we see that Stoner's result and with it the period 
lengths 2, 8, 18, 32, ... are immediately included in a natural way 
in our rule. Clearly, for given ki and k2 there cannot be more 
equivalent electrons in an atom than the appropriate value of 
(that is, 2k2) and in the completed group there corresponds 
exactly one electron to each of these values of m^. 

Secondly, it turns out that our rule has an immediate con-
sequence that the triplet 5-term with the same principal quantum 
number as the ground state is absent for the alkaline earths. 
If we investigate the possibilities for the equivalent binding of two 
electrons in 5-terms (in that case we have thus k^ = 1 and k2 can 
also only have the value 1), according to our rule the cases are 
excluded in strong fields where both electrons have = ^ or 
both have = rather, we can only have ηΐι=^ for the first 
electron and = — | for the second electron, or the other way 
roundt so that the quantum number =Σηΐι for the total atom 

tThe second case corresponds to an interchange of the two equivalent 
electrons and gives us therefore here no new stationary state (compare the 
footnote on p. 189). However, in this two-fold realisability of the quantum 
state considered is contained the fact that its statistical weight with respect to 
the exchangeability of the two electrons must be multiplied by two (compare 
also the discussion of statistical weights by Stoner)6. 
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can only have the value 0 . Therefore also in weak fields (or when 
there is no field) only the value7 = 0 is possible (singlet .S-term). 

We now investigate the case that one electron is removed from 
a closed shell, as will occur in X-ray spectra. Clearly when an 
electron is missing from one of Stoner's part-subgroups, the case 
is always possible that no electron is present with the value ιη^; 
we call this the "hole-value" of τη^. The other electrons are then 
uniquely divided over the other values of so that for each of 
those values we have one electron. The sum of these other values 
of mi and thus the quantum number m[ of the total atom is 
clearly in each case equal to the opposite of the hole-value ofm^. 
If we let it go through all possible values and take into account 
that an electron can be removed from every part-subgroup, we 
see that in strong fields the multiplicity of the hole-values of 
and thus also that of the values of m[ is the same as that of the 
mi value of a single electron. Due to the invariance of statistical 
weights it follows thus also for weak fields that the numbers of 
stationary states and of 7-values of single ionised closed electron 
shells (X-ray spectra) are the same as in the alkali spectra, in 
accordance with experiment. 

This is a special case of a general reciprocity law: For each 
arrangement of electrons there exists a conjugate arrangement in 
which the hole-values of m^ and the occupied values of m^ are 
interchanged. This interchange may refer to a single part-subgroup 
while the other part-subgroups are unchanged, or to a Bohr sub-
group, or to the whole of a main group, since the different part-
subgroups are completely independent of one another as far as 
possible arrangements are concerned. The electron numbers of the 
two conjugate arrangements add up to the number of electrons in the 
completed state of the group {or subgroup) considered, while the 
j'Values of the two arrangements are the same. The latter follows 
from the fact that the sum of the hole-values of of an arrange-
ment always is the opposite of the sum of the occupied mj-values. 
Therefore, the quantum numbers m[ of the whole atom are the 
opposite of one another for conjugate arrangements. As the 
7-values are defined as the upper limit of the set of /^-values , and 
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as this set is symmetric around zero, it follows that the y-values 
are the same (compare the examples discussed below). Because of 
this periodicity law to some extent the relations at the end of a 
period of the periodic table reflect those at the beginning of a 
period. We must emphasise, however, that this for the time being 
refers only to the number of stationary states of the shell in 
question and the values of their quantum numbers, whereas we 
can say nothing about the magnitude of their energies or about 
interval relations.! 

As an application of our rule we shall discuss now the special 
case of the gradual formation of the eight-shell (where of the 
principal quantum number considered no electrons with /: = 2 are 
present in the ground state); this gives us at the same time another 
example of the just-derived reciprocity rule. The binding of the 
first two electrons in this shell has already been discussed and in 
what follows we shall assume for the sake of simplicity that no 
electron is missing from the /:i = 1 subgroup so that it is closed 
(compare Table 2 with Stoner's scheme). According to Stoner, 
for the following elements until the completion of the eight-shell 
(e.g., from Β to Ne) the ground state will always be a /7-term, in 
agreement with all experimental data up to now. Especially 
follows the alkali-like spectrum, corresponding to the binding of 
the third electron of the eight-shell, with the well-known absence 
of the 5-term with the same principal quantum number as the 
ground state. 

We can thus immediately go over to the binding of the fourth 
electron of the eight-shell, which appears in the not-yet analysed 
arc spectrum of carbon and the partially already unraflled arc 
spectrum of lead. According to the Lande-Heisenberg branching 
rule (see previous section) the corresponding spectrum should have 
in general the same structure as the neon spectrum, that is, consist 
of a singlet-triplet group and a triplet-quintet group with different 
series Hmits, corresponding to the Ip^- and the 2/?2-doublet term 

t However, because of the equality of the number of W2-values for conjugate 
arrangements it follows that also in weak fields the "^-sums" (taken over 
terms with the same j) of the appropriate terms are the same. 
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with ^ 2 and with ^ 1. In the field free case these 

correspond clearly to two terms: one with J = 2, and one with 

7 = 1 . 
(c) Two equivalent A72 2-electrons: According to our rule the 

t Because of this we must count the case mi = -hi for the first and mi = —i 
for the second electron different from the case mi = —i for the first and 
mi + i for the second electron. Compare the footnote on p. 18^. 

of the ion considered. We shall show, however, that according to 
our rules these spectra must differ essentially, as far as the 
number and y-values of the /7-terms of the maximum principal 
quantum number (« = 2 for C, w = 6 for Pb) is concerned, from 
the Ne-spectrum (where, as we mentioned at the beginning of this 
section, apart from the ground state with y = 0 no further /7-term 
exists with principal quantum number 2); this is in contrast to the 
structure of the excited states which we expect to be similar. 

We must distinguish three cases, according to the number of 
electrons in the two part-subgroups with fci = 2, ^2 = 1 and with 
fci = 2, A:2 = 2 over which we must distribute two electrons (we 
have already assumed that the first two electrons are bound in 
j- terms, /cj = ^2 = 0 · 

(a) Two equivalent «2 r^lectrons: Corresponding to the /7i- term 

of the alkalis can for this part-subgroup only take on the two 

values = It is thus closed in this case with = 0 and 

./ = 0. 

(b) One /I21- ^nd one /722-electron: For the second part-

subgroup mi can, corresponding to the /72-term of the alkalis 

take on the four values ± i , ± f and these can be combined in all 

possible ways with the above-mentioned values /Wj = -f | of the 

first electron, since the two electrons are in different part-subgroups 

and are thus not equivalent.! We have thus 

mi={-h-hhi)H-hi) 

= ± ( i + i ) , ± ( i - i ) , ± ( i + i ) , ± ( i - i ) 

= ± 2 , ± 1 , ± 1 , 0 , 0 . 

From this we see immediately that the terms split in two series 
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- 2 - 1 0 1 2 

'"2 - 3 , - 2 - 2 , - 1 , - 1 0 , 0 , 0 , 0 , 0 1,1,2 2 ,3 

Using the same rule applied by Landé"^ to higher-order multiplets, 
one obtains from this for the determination of the sum of the 
gf-values for the two 7 = 2 terms (denoted by Σ ^ j ) and for the 
^-value for the j = 1 term (denoted hy g^) the equations 

2Zöf2 = 2 + 3 = 5, Xöf2 + Ö'i = 1-f 1 + 2 = 4, 

or S ^ 2 = i 9i=i' 

The earliest test of this theoretical result for the four-shell is 
possible for lead. Observations certainly show four /7-terms, while 
the existence of a fifth /7-term is doubtful.^ So far unpubhshed 
measurements by E. Back of a few lead lines make it, moreover, 
very likely that the first four /7-terms have 7-values 2, 2, 1, 0 , and 
that the ö'-values of these terms also agree with the theoretically 
expected ones. 

Let us now return to the discussion of the gradual construction 
of the eight-shell. By means of the reciprocity rule, applied to the 

mi-values of the two electrons must be different and we find for 

the possible values of : 

^ = ± ( f + i ) , ± ( i - i ) , ( i - f ) , ( i - i ) = ± 2 , + 1 , 0 , 0 . 

If there is no magnetic field we find thus one term with 7 = 2 
and one with j = 0. 

Altogether we find thus for the four-shell five different p-terms 
with maximum principal quantum number, of which two have j = 2, 
one j = 1, and two j = 0. 

We can say nothing about the energies or the interval relations 
of this group of terms. However, we can make definite statements 
about the Zeeman splittings of these terms to be expected. 

By substituting the W 2 - v a l u e s (taken from the Zeeman terms of 
the alkalis in strong fields) for the separate electrons correspond-
ing to the given -values, we find from rule (1) the Zeeman 
splittings for the five /7-terms of the four-shell in strong fields: 
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whole of the Bohr subgroup with k = 2, which contains in its 
closed state six electrons, we can immediately apply the results 
obtained for the four-shell to the number of possibilities to realise 
the six-shell (from electrons with = 2), which occurs, for 
instance, for O. The following cases of the six-shell are clearly 
conjugate to the cases (a), (b), and (c): 

(a) Four equivalent «22-electrons (two empty spaces in the 
«2i -g roup) . This part-subgroup is closed; hence as before sub (a) 
one term with J = 0. 

(b) One « 2 i - > three equivalent /Z22-^lcctrons (one empty space 
in the 7721-, and one empty space in the /222-group). As before: 
one term with j = 2 and one term with y = 1. 

(c) Two equivalent «21- and two equivalent «22-electrons (two 
empty spaces in the n22-groiip)- The first part-subgroup is closed. 
As before: one term with J = 2, one term with j = 0. 

We must thus also here, for instance for oxygen, expect five 
p-terms with the smallest principal quantum number. So far only 
three such terms have been observed for O and S, with y-values of 
2, 1, 0.^ We must wait and see whether two more /7-terms of the 
same principal quantum number can be found from the observa-
tions, or whether our rule must be modified in this case. 

As yet there are no observations about the five-shell (3 electrons 
with fci = 2) and we shall therefore give only the result of the 
discussion; according to our rule this shell gives rise to five 
/7-terms, one term with j = | , three terms with J = f, and one term 
with J = i . For the seven-shell, realised in x-ray spectra we get— 
as we mentioned before—terms similar to the alkalis. 

We shall not discuss here further special cases, before experi-
mental data are available, but it should be clear from the examples 
given that in each case our rule is able to give a unique answer to 
the question about the possibilities of realising the different shells 
for a given number of equivalent electrons. To be sure, only in the 
simplest cases was it possible to verify that the results obtained in 
this way are in agreement with experiment. 

In general we may note that the discussions given here are in 
principle based, as far as the transition from strong to weak or 
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vanishing fields is concerned, upon the invariance of the statistical 
weights of quantum states. However, on the basis of the results 
obtained there seem to be no reasons for a connexion between the 
problem of the completion of electron groups in an atom and the 
correspondence principle, as Bohr suspected to be the case. It is 
probably necessary to improve the basic principles of quantum 
theory before we can successfully discuss the problem of a better 
foundation of the general rules, suggested here, for the occurrence 
of equivalent electrons in an atom. 
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