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ABSTRACT

In the systematic review of the Bell inequalities, the system of inequalities (34) was
given in a more precise way and the new inequality of the Bell type was also constructed.
The suggestion of an experimental test of this new inequality is proposed.

1. INTRODUCTION

The problem began with the Einstein Podolsky Rosen paradox [1] which
in a modification given by Bohr and Aharonov [2] is the following. Consider
two electrons in the initial singlet state (S = 0) freely moving in opposite
directions. The spin of each electron is then measured after some time of
a separation in remote places A and B (Fig. 1). If a measured spin of an
electron in A is in a direction a (say: spin up) then, due to a quantum
mechanical prediction, a spin of an electron in B must be in a direction −a
(say: spin down). However, in classical physics, the measurement on the
particle in A does not influence the particle in B. In what follows, the spin
will be taken in the unit h̄/2 and an eigenvalue of a spin component will be
σk = ±1.

Let us generalize the problem and ask the following question. What is an
expectation value of the electron spin in B measured in the direction b when
the spin of the electron in A has been measured in the direction a (Fig. 1)? It
is clear that an answer will be different in classical and in quantum physics,

∗ Partially supported by the Polish Committee of Scientific Research, project number
2P 03B 115 19.
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Fig. 1. Einstein Podolsky Rosen paradox with electron spins

because the first does not predict any correlations of two electrons while the
second necessarily imposes a strong spin-correlations. Results of a single
measurement in B can give only +1 (the spin in a direction b) or −1 (the
spin in −b). Hence a mean value of spin measurements P (ab) is bounded

−1 ≤ P (ab) ≤ 1 .

According to quantum mechanics, calculations give

P (ab) = − cos θ . (1)

The fundamental result of Bell work [3] gave

P (ab)class 6= − cos θ . (2)

It is the conclusion followed the Bell inequality for any classical P (ab)

1 + P (bb′) ≥ |P (ab)− P (ab′)| (3)

Modifications and generalizations of the Bell inequality have been directed
toward forms easily applied to experiments both with electrons and with
photons initially coupled to S = 0. Quantum calculations gave for photons

P (ab) = cos 2θ . (4)

The aim of the present work is the systematic comparison of the different
Bell type inequalities including the new one obtained here. In the last
Section the particular classical model is introduced which gives the same,
as in quantum mechanics, predictions for special angles between a and b.
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2. QUANTUM MECHANICAL CORRELATIONS OF THE EPR PARADOX
WITH ELECTRONS

Similarly, as in the introduction, we will consider the correlations of
electron spins in A (direction a) and in B (direction b).

After a spin measurement of the electron in A in the a direction, the
second electron in B must have a spin in the direction −a, but measurement
is performed in the direction b. We need to calculate the probability of an
electron jump from −a to b. The vector state |b〉 can be formed in the
orthogonal base |a〉 and | − a〉|

|b〉 = k1|a〉+ k2| − a〉

or
1

k1
|b〉 ≡ |b〉′ = |a〉+ q| − a〉 (5)

where k1 and k2 are probability amplitudes. From a projection construction
of the Riemann sphere on a plane [9] we get

|q| = tan
θ

2
0 ≤ θ ≤ π . (6)

Then

|b〉′ = |a〉+ tan
θ

2
| − a〉 . (7)

After normalization

|b〉 = cos
θ

2
|a〉+ sin

θ

2
| − a〉 (8)

Similarly

| − b〉′ = |a〉+ q′| − a〉 , (9)

where q′ = cot θ/2.
Hence

| − b〉′ = sin
θ

2
|a〉+ cos

θ

2
| − a〉 . (10)

Immediately we get

|〈−a|b〉|2 = sin2 θ

2
=

1

2
(1− cos θ) (11)

|〈−a| − b〉|2 = cos2 θ

2
=

1

2
(1 + cos θ) . (12)
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Hence, the expectation value of the spin measurement in B (b) is

P (ab) = |〈−a|b〉|2 × (+1) + |〈−a| − b〉|2 × (−1) = − cos θ . (13)

We introduce now the notation ”yes” (+1) and ”no” (−1) for spins ”up”
and ”down”. Hence, the spin of the state |b〉 will be marked by ”yes” and
| − b〉 by ”no”; contrary, the spin of | − a〉 — by ”yes” and |a〉 by ”no”.
Probabilities of the four possible correlations read (where we have taken the
factor 1/2 because we have introduced two possibilities a and −a)

”yes yes” w++ ≡
1
2 |〈−a|b〉|

2 = 1
2 sin2 θ

2

”no no” w−− ≡
1
2 |〈a|−b〉 = 1

2 sin2 θ
2

”yes no” w+− ≡
1
2 |〈−a|−b〉 = 1

2 cos2 θ
2

”no yes” w−+ ≡
1
2 |〈a|b〉 = 1

2 cos2 θ
2

(14)

Hence
w++ + w−− + w+− + w−+ = 1 (15)

and

w++ = w−− =
1

2
sin2 θ

2

w+− = w−+ =
1

2
cos2 θ

2
. (16)

The expectation value P (ab) can also be obtained from the formula

P (ab) = w++ + w−− − w+− − w−+ = − cos θ (17)

3. QUANTUM MECHANICAL CORRELATIONS OF THE EPR PARADOX
WITH PHOTONS

For a photon spin (S = 1) an abstract spin space is of three dimensions
which makes a treatment more simple and transparent then for electrons.
Suppose two photons in the initial single state (S = 0) are moving in
opposite directions toward two polarisers in A(a) and B(b) with the angle
θ between a and b. Experimental results can be also described in ”yes”
and ”no” notation with, however, different interpretation: ”yes” (+) — for
a parallel photon polarisation (the photon passes the polariser) and ”no” −
for a perpendicular polarisation (the photon is captured by the polariser).
We will consider four cases ”yes” ”no” like in (14) using a simple geometrical
interpretation.



Systematic review of the generalized Bell inequalities 93

(i) The first photon is detected by the a polariser (p ‖ a) (and then, the
second photon has the same polarisation direction).

Hence

ω′
++ = cos2 θ

w′
+− = cos2(90◦ − θ) = sin2 θ .

(ii) The first photon is captured by the a polariser (p ⊥ a).

Hence

ω′
−+ = cos2(90◦ − θ) = sin2 θ

w′
−− = cos2 θ .

Hence

w′
++ + w′

−− + w′
+− + w′

−+ = 2 cos2 θ + 2 sin2 θ = 2 .

After normalization

w++ = w−− =
1

2
cos2 θ

w+− = w−+ =
1

2
sin2 θ

and

P (ab) = w++ + w−− − w+− − w−+ ≡ cos2 θ − sin2 θ = cos 2θ . (18)

Let us notice the characteristic difference of the correlation function P (ab)
for electrons (− cos θ) and for photons (cos 2θ).
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4. CLASSICAL APPROACH TO THE EPR PARADOX

We assume, after Bell [3], that a complete specification of experimental
results can be done by means of a hidden parameter λ. Spin (polarisation)
measurements in A and B are

A(aλ) = ±1 and B(bλ) = ±1 .

We also assume that a measurement in B does not depend on the result in
A. Similarly, we introduce the probability distribution ρ(λ) with

∫

dλρ(λ) = 1 .

The expectation values of σ1 in A and simultaneously σ2 in B is

P (ab) =

∫

dλρ(λ)A(aλ)B(bλ) .

We introduce also the correlation function P (ab′) for measurements in a

and b′. Then

P (ab)− P (ab′) =

∫

dλρ(λ){A(aλ)B(bλ)−A(aλ)B(b′λ)} .

Hence

|P (ab)− P (ab′)| ≤

∫

dλρ(λ)|A(aλ)B(bλ)|{1−B(bλ)B(b′λ)} ,

or

|P (ab)− P (ab′)| ≤ 1−

∫

dλρ(λ)B(bλ)B(b′λ) . (19)

To calculate the integral in (19) we will follow Clauser et al. [4] procedure
after some modifications. At first, we introduce the correlation function
P (a′b)

P (a′b) = −1 for a′ = b

P (a′b) = −1 + δ for a′ 6= b 0 < δ ≤ 2 . (20)

In the integral

P (a′b) =

∫

ρ(λ)dλA(a′λ)B(bλ)

we divide the λ-space on two regions

Γ+ for A(a′λ) = B(bλ)
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and
Γ− for A(a′λ) = −B(bλ) . (21)

From (20) and (21) we get

∫

Γ+

dλρ(λ) =
δ

2
;

∫

Γ−

dλρ(λ) = 1−
δ

2
(22)

and also
∫

dλρ(λ)B(bλ)B(b′λ) =

∫

dλρ(λ)A(a′λ)B(b′λ)− 2

∫

Γ−

dλρ(λ)A(a′λ)B(b′λ)

Hence
∫

dλρ(λ)B(bλ)B(b′λ) ≥ P (a′b′)− 2

∫

Γ−
dλρ(λ)

and by (22)
∫

dλρ(λ)B(bλ)B(b′λ) ≥ P (a′b′)− 2 + δ . (23)

Taking (23) in (19), we get

|P (ab)− P (ab′)| ≤ 1− P (a′b′) + 2− δ

or
|P (ab)− P (ab′)| ≤ 2− P (a′b′)− P (a′b) . (24)

Hence
|P (ab)− P (ab′)|+ P (a′b) + P (a′b′) ≤ 2 . (25)

The last inequality was obtained by Clauser et al. [4]. If we specify in (25)
P (a′b) = 1 for a′ = −b, we get

|P (ab)− P (ab′)| ≤ 1 + P (bb′) (3)

and this is exactly the Bell inequality (3).
Now we will perform an alternative procedure to calculate the integral

in (19):
∫

dλρ(λ)B(bλ)B(b′λ) = 2

∫

Γ+

dλρ(λ)A(a′λ)B(b′λ)−

∫

dλρ(λ)A(a′λ)B(b′λ) .

Then
∫

dλρ(λ)B(bλ)B(b′λ) ≥ −2

∫

Γ+

dλρ(λ)− P (a′b′) .
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or
∫

dλρ(λ)B(bλ)B(b′λ) ≥ −δ − P (a′b′) . (26)

Taking (26) to (19) we get

|P (ab)− P (ab′)| ≤ 1 + δ + P (a′b′)

or
|P (ab)− P (ab′)| ≤ 2 + P (a′b′) + P (a′b) . (27)

One could not say whether the inequality (24) or (27) provides the better
bounding for |P (ab)− P (ab′)|, because for any P : −1 ≤ P ≤ 1.

Let us combine both (24) and (27). From (24) we get

−2 + P (a′b′) + P (a′b) ≤ P (ab)− P (ab′) ≤ 2− P (a′b′)− P (a′b)

or

−2 + 2P (a′b′) + 2P (a′b) ≤ P (ab)− P (ab′) + P (a′b′) + P (a′b) ≤ 2 (28)

and similarly from (27):

−2 ≤ P (ab)− P (ab′) + P (a′b′) + P (a′b) ≤ 2 + 2P (a′b′) + 2P (a′b) . (29)

Hence, (28) and (29) give
−2 ≤ S ≤ 2 ,

where (30)

S = P (ab)− P (ab′) + P (a′b) + P (a′b′)

Moreover, taking (24) into account we also get

−2 ≤ |P (ab)− P (ab′)|+ P (a′b) + P (a′b′) ≤ 2 . (31)

The inequality (30) can be immediately compared with quantum mechanical
prediction (18). Let us choose the angles between direction a, b, a′ and b′

like in Figure 2.
From (30) we get

S(θ) = 3P (θ)− P (3θ) and− 2 ≤ 3P (θ)− P (3θ) ≤ 2 . (32)

But P (θ) = cos 2θ, hence

−2 ≤ 3 cos 2θ − cos 6θ ≤ 2 . (33)
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Fig. 2. Optimal fixing of vector orientations a, b, a′, b′ for spin measurements

S(θ) has its maximum for θ = 22.5◦ and S(22.5◦) ' 2.8.
Figure 3 represents S(θ) with classical limit −2 ≤ S ≤ 2. Measurements

have agreed with quantum mechanical predictions.
Coming back to the inequalities (30-31) we can say that the most exact

boundaries are given by a pair of inequalities

|P (ab)− P (ab′)|+ P (a′b′) + P (a′b) ≤ 2

and (34)

P (ab)− P (ab′) + P (a′b′) + P (a′b) ≥ −2

For the EPR paradox with electrons, the correlation function P (ab) =
− cos θ. For this case we get

−2 ≤ −3 cos θ + cos 3θ ≤ 2 (35)

with S(θ)min = S(45◦) ≈ −2.8. Similarly, in this case there is also the most
visible discrepancy with classical predictions around θ = 45◦ (Fig. 4).

Two other Bell inequalities have been also tested experimentally. Let
us assume that the photon polarisers are arranged with the same angles as
in Figure 2. The probability of simultaneous registrations of two photons
which passed two remote filters in A and B reads

w++ =
R(ab)

R0
, (36)

where R(ab) is a number of registered pairs of photons and R0 is the
total number of registrations in four cases w(++);w(−−);w(+−);w(−+). For
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90o22,5o 67,5o45o

P(ab)

q

Fig. 3. The quantum function S(θ) for photons (33) with classical boundaries
(dotted lines)

a hundred percentage efficiency

R0 = R(0, 0) , (37)

where R(0, 0) mark the registrations without polarisers.

Let us also denote

R1(a) = R(a, 0) and R2(b) = R(0, b) (38)

that means a number of registrations with the second (first) polariser
removed. Obviously we get

1 = w++ + w−− + w+− + w−+

R1(a)

R0
≡ w+0 = w++ + w+− (39)

R2(b)

R0
≡ w0+ = w++ + w−+ .

Then, from (18) we get

P (ab) = w++ + w−− − w+− − w−+ =

= 1 +
4R(ab)

R0
−

2R1(a)

R0
−

2R2(b)

R0
. (40)
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Fig. 4. The quantum function S(θ) for electrons (35) with classical boundaries
(dotted lines)

and
R(ab)

R0
=

1

4
P (ab) +

1

2

R1(a)

R0
+

1

2

R2(b)

R0
−

1

4
. (41)

For an ideal measurement

R1(a)

R0
=

R2(b)

R0
=

1

2
. (42)

Hence
R(ab)

R0
= 0.25P (ab) + 0.25 (43)

or

P (ab) = 4
R(ab)

R0
− 1 . (44)

In a practical measurement both coefficients are slightly lower, for example
in [6]

R(ab)

R0
= 0.218P (ab) + 0.249 . (45)

From (40) and (30), after simple transformations we get

−1 ≤ T ≤ 0 , (46)

where

T =
R(ab)

R0
−
R(ab′)

R0
+
R(a′b)

R0
+
R(a′b′)

R0
−
R1(a′)

R0
−
R2(b)

R0
.
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For angles like in Figure 2 we get

−1 ≤
3R(θ)

R0
−
R(3θ)

R0
−
R1

R0
−
R2

R0
≤ 0 . (47)

This is the next generalized Bell inequality which was experimentally tested
The (47) can be further transformed. For an angle θ

P (θ) = 1 +
4R(θ)

R0
−

2R1

R0
−

2R2

R0

and with P (θ) = w++ + w−− − w+− − w−+ we get

2R(θ)

R0
−
R1

R0
−
R2

R0
= −(w+− + w−+)θ .

The last relation can be put in (47)

−1 ≤
R(θ)

R0
−
R(3θ)

R0
− (w+− + w−+)θ ≤ 0 . (48)

Let us rewrite (47) for θ = π/8 and θ = 3π/8

−1 ≤
3R(π/8)

R0
−
R(π/8)

R0
−
R1

R0
−
R2

R0
≤ 0

and (49)

−1 ≤
3R(3π/8)

R0
−
R(9π/8)

R0
−
R1

R0
−
R2

R0
≤ 0 .

But
R(9π/8)

R0
=

R(π/8)

R0
and from (49) we get

−
1

4
≤

R(π/8)

R0
−
R(3π/8)

R0
≤

1

4
. (50)

The both inequalities (47) and (50) were also obtained by Clauser et al. [5].
Now, we will demonstrate how one could get the new inequality of the

similar type. Namely, from the obtained in this paper inequality (48) for
θ = π/8 and with the help of the Clauser inequality (50) we have obtained

1

4
≤ (w+− + w−+)π

8
≤

3

4
(51)

Simplicity of our inequality (51) is seen from only one angle between a and
b of both polarisers. What we need from experiments is only a number
of anticoincidencies (+−) and (−+). We suggest here to perform proper
measurements in the already constructed experimental device to check that
results willl exceed the boundary limit of (51). The (51) can be also obtained
for θ = 3π/8.
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5. COMPARISON WITH EXPERIMENTS

In section 3 we have given the quantum mechanics prediction for the
correlation function for initially correlated photons with S = 0

P (ab) = cos 2θ (4)

Then in section 4 we have gathered the family of Bell inequalities including
the last one (51) obtained in this work

−2 ≤ S ≤ 2 (30)

−1 ≤ T ≤ 0 (46)

−
1

4
≤ δ ≤

1

4
(50)

1

4
≤ X ≤

3

4
(51)

where

S = P (ab)− P (ab′) + P (a′b) + P (a′b′)

T =
R(ab)

R0
−
R(ab′)

R0
+
R(a′b)

R0
+
R(a′b′)

R0
−
R1(a′)

R0
−
R2(b)

R0

δ =
R(π/8)

R0
−
R(3π/8)

R0

X = (w+− + w−+)π
8
.

Angles between directions a, b, a′, b′ usually are taken as in Figure 2 with
θ = 22.5◦ or 67.5◦. Let us gather examples of results of the three Aspect
fundamental papers [6, 7, 8] with classical and quantum predictions. In the
first paper [6] experimental results have been compared with the inequalities
(46), (47) and (50). The R1 and R2 were, almost exactly taken as

R1

R0
≈

R2

R0
≈ 0.5 .

and from (45) and (47) for θ = π/8

Tqm ≈ 0.118 ,
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On the other side from experimental data they obtained

Texp = 0.126± 0.0414 .

Hence, the experimental value confirm the quantum mechanical results and
both numbers are beyond the classical boundaries (46). Similarly, for the
same angle θ = π/8 the quantum mechanics and experimental values for δ
are

δqm ≈ 0.25 + 5.7× 10−2 and δexp = 0.25 + (5.8± 0.2)× 10−2 .

in contradiction with classical inequality (50).
In the second paper [7] the inequality (30) has been analytically analysed.

The experimentally corrected function P (θ) is

P (θ) = 0.955 cos 2θ (52)

instead cos 2θ. Hence, for θ = π/8

Sqm

(

π

θ

)

= 2.70± 0.05 . (53)

Experimental results were in high agreement with (53) and both contra-
dicted the classical inequality (30). In the third paper [7] in which the
eventual communication between two measurements in A and B has been
prevented the authors obtained

Texp = 0.101∓ 0.020

which contradicts the classical inequality (46) and is in accord with quantum
calculations.

6. THE CLASSICAL MODEL FOR THE EPR PARADOX

We will modify and extend the theoretical model given in the original
Bell paper [3]. In the correlation function

P (ab) =

∫

dλρ(λ)A(aλ)B(bλ) (54)

A(aλ) = ±1; B(bλ) = ±1 and
∫

dλρ(λ) = 1.
In the general treatment nothing is assumed about a dependence of

A and B on a, b, λ. Hence, the Bell inequalities already treated have the
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ab

Fig. 5. Assumed λ-space as a hemisphere |λ| = 1

general validity. But now, we assume that the λ-space is over the hemisphere
|λ| = 1, Figure 5, with the uniform probability distribution ρ(λ) = ρ. Hence

∫

dλρ(λ) = ρ

∫

dλ = 2πλ2ρ = 1 , or ρ =
1

2π
. (55)

Then

dλ = sinβdβdα ,

Let us assume that A(aλ) and B(bλ) do not depend on β. Hence

P (ab) = ρ

π
∫

0

dαA(aλ)B(bλ)

π
∫

0

sinβdβ or

P (ab) = 2ρ

∫ π

0
dαA(aλ)B(bλ) =

1

π

∫ π

0
dαA(aλ)B(bλ) . (56)

The last integral is taken over an arc (0, π) (Fig. 6) in such a way as to
get the most similar form of P (ab) for electrons (P (ab) = − cos θ) and for
photons (P (ab) = cos 2θ).

a

l

Fig. 6. The integral (56) is taken over an arc (0, π)
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a

l

q

b

a

Fig. 7. The integral (56) with (57) for given a and b is equal −1 + 2θ/π (electron case)

For electrons, we assume

A(aλ) = sign(a · λ) ; B(bλ) = −sign(b · λ) . (57)

From Figure 7 we get

P (ab) =
1

π

π
∫

0

dα sign(a · λ)(−sign(b · λ)) = −1 +
2θ

π
, (58)

Now we can compare the classical and quantum P (ab), Figure 8. We see
that only for θ = 0◦; 90◦ and 180◦

Pclass(ab) = Pqm(ab) .

For a photon experiment we choose

A(aλ) = sign(a · λ) B(bλ) = sign(b′ · λ) and b′ = R(θ)b , (59)

where R(θ) is a rotation operator around z-axis (Fig. 9).
Now we get

P (ab) =
1

π
(π − 2θ − 2θ) = 1−

4θ

π
. (60)

Hence, P (ab)class = P (ab)qm for θ = 0◦; 45◦; 90◦ (Fig. 10).
Let us remark that for θ = π/8 (the maximum difference between

classical and quantum evaluation) we get from

P (ab) = w++ + w−− − w+− − w−+

and
1 = w++ + w−− − w+− − w−+
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q

a

l

b

a

q

b’

Fig. 8. Comparison of the classical correlation function Pclass(ab) ≡ Pclass(θ) with its
quantum equivalent Pqm(θ) for electrons

-1

0

1

pp/2

P(ab)

q

q.m.

class.

Fig. 9. The integral (56) with (59) for given a and b′ is equal 1− 4θ/π (photon case)

the relation

(w+− + w−+)π
8

=
1

2

[

1− P

(

π

8

)]

and

(w+− + w−+)π
8

class = 0.25

(w+− + w−+)π
8

qm = 0.15

The classical value in our model reaches the lower limit of the inequality
(51) while the quantum value is beyond that limit as it should be.



106 StanisÃlaw Szpikowski

-1

0

1

p/2p/4

P(ab)

q

q.m.

class.

Fig. 10. Comparison of the classical correlation function PclassP (ab) ≡ Pclass(θ) with its
quantum equivalent Pqm(θ) for photons

7. SUMMARY

In the present work:

(i) the unified treatment of the generalized Bell inequalities has been
presented;

(ii) the new inequality has been constructed;
(iii) the classical model as well for the electron type EPR as for the photon

type has been constructed.
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