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Preface to the First (German) Edition

REFERRING to these six papers (the present reprint of which is
solely due to the great demand for separate copies), a young lady
friend recently remarked to the author: “ When you began this
work you had no idea that anything so clever would come out of it,
had you 2 This remark, with which I wholehcartedly agreed (with
due qualification of the flattering adjective), may serve to call attention
to the fact that the papers now combined in one volume were originally
written one by one at different times. The results of the later sections
were largely unknown to the writer of the earlier ones. Consequently,
the material has unfortunately not always been set forth in as orderly
and systematic a way as might be desired, and further, the papers
exhibit a gradual development of ideas which (owing to the nature
of the process of reproduction) could not be allowed for by any alteration
or elaboration of the carlier sections. The Abstract which is prefixed
to the text may help to make up for these deficiencies.

The fact that the papers have been reprinted without alteration
in no way implies that I claim to have succeeded in establishing a
theory which, though capable of (and indeed requiring) extension, is
firmly based as regards its physical foundations and henceforth admits
of no alteration in its fundamental ideas. On the contrary, this com-
paratively cheap method of issue seemed advisable on account of the
impossibility at the present stage of giving a fresh exposition which
would be really satisfactory or conclusive.

E. SCHRODINGER.

ZURrIcH, November 1926.



Publishers’ Note

Tr1s translation has been prepared from the second edition of the
author’s Abhandlungen zur Wellenmechanik, published by Johann
Ambrosius Barth, 1928. These papers include practically all that
Professor Schrodinger has written on Wave Mechanices.

The translation has been made by J. F. Shearer, M.A., B.Sc., of
the Department of Natural Philosophy in the University of Glasgow,
and W. M. Deans, B.A., B.Sc., late of Newnham College, Cambridge.

The translators have tried to follow the original as closely as the
English idiom would permit. The English version has been read by
Professor Schrodinger.  Throughout the book Eigenfunkiion has been
translated proper function, and Eigenwert, proper value. The phrase
eine stlickweise stelige Funktion has been translated a sectionally
continuous function. These cquivalents were decided upon after
consultation with the author and with several English mathematicians
of eminence.
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Abstract

(The references are to pages.)

Trr Hamiltonian analogy of mechanics to optics (pp. 13-18) is an
analogy to geometrical optics, since to the path of the representative
point in configuration space there corresponds on the optical side the
lght ray, which is only rigorously defined in terms of geometrical
optics. The undulatory elaboration of the optical picture (pp. 19-30)
leads to the surrender of the idea of the path of the system, as soon
as the dimensions of the path are not great in comparison with the
wave-length (pp. 25-26). Only when they are so does the idea of
the path remain, and with it classical mechanics as an approximation
(pp. 20-24, 41-44); whereas for ° micro-mechanical ” motions the
fundamental equations of mechanics are just as useless as geometrical
optics is for the treatment of diffraction problems. In analogy with
the latter case, a wave equalion in configuration space must replace
the fundamental equations of mechanics. In the first instance, this
cquation is stated for purely periodic vibrations sinusoidal with
respect to time (p. 27 ef seq.); it may also be derived from a
“ Hamiltonian variation principle ” (p. 1 et seq., pp. 11-12). It
contains a ‘‘ proper,. value parameter” E, which corresponds to the
mechanical energy I macroscopic problems, and which for a single
time-sinusoidal vibration is ecqual to the frequency multiplied by
Planck’s quantum of action %. In general the wave or vibration
equation possesses no solutions, which together with their derivatives
are one-valued, finite, and continuous throughout configuration space,
except for certain special values of E, the proper values. These values
form the ““proper value spectrum ” which frequently includes con-
tinuous parts (the “band spectrum ”, not expressly considered in
most formulae: for its treatment see p. 112 et seq.) as well as
discrete points (the ‘‘line spectrum ). The proper values either
turn out to be identical with the “energy levels” (=spectroscopic
“ term ”-value multiplied by A) of the quantum theory as hitherto
developed, or differ from them in a manner which is confirmed by
experience. (Unperturbed Keplerian motion pp. 1-12; harmonic
oscillator, pp. 30-34; rigid rotator, pp. 35-36; non-rigid rotator,
pp. 36-40; Stark effect, pp. 76-82, 93-96.) Deviations of the kind
mentioned are, e.g., the appearance of non-integral quantum numbers
1X



x WAVE MECHANICS

(viz. the halves of odd numbers) in the case of the oscillator and
rotator, and further, the non-appearance of the ‘ surplus” levels
(viz. those with vanishing azimuthal or equatorial quantum number)
in the Kepler problem. Even in these matters the agreement with
Heisenberg’s quantum mechanics is complete : this can be proved in
general (see below and pp. 45-61). For the calculation of the proper
values and the corresponding solutions of the vibration equation
(““ proper functions ) in more complicated cases, there is developed
a theory of perturbations, which enables a more difficult problem to be
reduced by quadratures alone to a ‘‘ neighbouring ” but simpler one
(pp. 64-76). To “ degeneracy ” corresponds the appearance of
multiple proper values (p. 11, p. 33 et seq.). Especially important
physically is the case where, as, e.g., in the Zeeman and Stark effects,
a multiple proper value is split up by the addition of perturbing forces
(general case, pp. 69-76 ; Stark effect, pp. 93-96).

Up till now the function ¢ has merely been defined in a purely
formal way as obeying the above-mentioned wave equation, serving
as its object, so to speak. It is necessary to ascribe to i a physical,
namely an electromagnetic, meaning, in order to make the fact that a
small mechanical system can emit electromagnetic waves of a frequency
equal to a term-difference (difference of two proper values divided by %)
intelligible at all, and further, in order to obtain a theoretical state-
ment for the intensity and polarisation of these electromagnetic waves.
This meaning, for the general case of a system with an arbitrary number
of degrees of freedom, is not clearly worked out until the end of the
sixth paper (pp. 120-123 ; a preliminary attempt for the one-clectron
problem, on p. 60 et seq., turned out incomplete). A definite
Y-distribution in configuration space is interpreted as a continuous
distribution of electricity (and of electric current density) in actual
space. If from this distribution of electricity we calculate the com-
ponent of the electric moment of the whole system in any direction
in the usual way, it appears as the sum of single terms, each of
which is associated with a couple of proper vibrations, and vibrates in
a purely sinusoidal manner with respect to the time with a frequency
equal to, the difference of the allied proper frequencies (p. 60 et seq.,
where ¢ is to be replaced by . This simplifies the calculation
without essentially modifying it). If the wave-length of the electro-
magnetic waves, associated with this difference frequency, is large
compared with the dimensions of the region to which the whole
distribution of electricity is practically confined, then, aecording
to the rules of ordinary electrodynamics, the amplitude of the partial
moment in question (or, more accurately, the square of this amplitude
multiplied by the fourth power of the frequency) is a measure of the
intensity of the light radiated with this frequency, and with this
direction of polarisation. The electrodynamic hypothesis concerning
¢, and the related purely classical calculation of the radiation, are
verified by experience, in so far as they furnish the customary selection
and polarisation rules for the oscillator, rotator and the hydrogen atom
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(easy to show from the results of p. 30 et seq., p. 35 et seq., and
of pp. 1-12; cf. p. 101). Further, they also furnish satisfactory
intensity relations for the fine structure of the Balmer lines in an
electric field (p. 82 to p. 92). If only one proper vibration or only
proper vibrations of ome proper frequency are excited, then the
electrical distribution becomes static, yet stationary currents may
possibly be superimposed (magnetic atoms, p. 123). In this manner
the stgbility of the normal state and its lack of radiation are ex-
plained.

The amplitudes of the partial moments are closely connected with
those quantities (““ matrix elements ), which determine the radiation,
according to the formal theory of Heisenberg, Born, and Jordan.
There can be demonstrated a far-reaching formal identity of the two
theories (pp. 45-61), according to which not only do the calculated
emission frequencies and selection and polarisation rules agree, but
also the above-mentioned successful results of the intensity calculations
are to be credited as much to the matrix theory as to the present one.

Everything up till now has referred in the first instance only to
conservative systems, although some parts have reached their final
formulation only in the sixth paper in connection with the treatment
of non-conservative systems. For the latter, the wave equation used
hitherto must be generalised into a true wave equation, which contains
the time explicitly, and is valid not merely for vibrations purely
sinusoidal with respect to time (with a frequency which appears in
the equation as a proper value paramecter), but for any arbitrary
dependence on the time (pp. 102-104). From the wave equation
generalised in this way, the interaction of the system with an incident
light wave can be deduced, and hence a rational dispersion formula
(pp. 104-117); in all this the electrodynamic hypothesis about i is
retained. The generalisation for an arbitrary disturbance is indicated
(p. 117 et seq.). Further, from the generalised wave equation an
interesting conservation theorem for the ‘* weight function ” i} can
be obtained (p. 121), which demonstrates the complete justification
of the electrodynamic hypothesis frequently mentioned above, and
which makes possible the deduction of the expressions for the com-
ponents of the electric current density, in terms of the i-distribution
(p. 122 et seq.).

Even the systems treated in the first five papers cannot be con-
servative in the literal sense of the word, inasmuch as they radiate
energy ; this must be accompanied by a change in the system. Thus
there still seems to be something lacking in the wave law for the
Y-function,—corresponding to the ‘““reaction of radiation’ of the
classical electron theory, which may result in a dying away of the
higher vibrations in favour of the lower ones (p. 116). This necessary
complement is still massing.

The form of the theory discussed so far corresponds to classical
(t.e. non-relativistic) mechanics, and does not take magnetic fields
into consideration. Therefore, neither the wave equation nor the
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components of the four-current are invariant for the Lorentz trans-
formation. For the one-electron problem an immediate relativistic-
magnetic generalisation is readily suggested (pp. 118-120 ; the Lorentz-
invariant expressions for the components of the four-current are not
given in the text, but they can be got! from the ““ equation of con-
tinuity ”’, which is to be formed in a way quite analogous to that in
the non-relativistic case ; cf. p. 122). Though this generalisation yields
Sformally reasonable expressions for the wave lengths, polarisations,
intensitics, and selection in the natural fine structure and in the
Zeeman pattern of the hydrogen atom, yet the actual diagram turns
out quite wrong, for the reason that  half integers’ appear as
azimuthal quantum numbers in the Sommerfeld fine structure formula
(p. 9 and p. 119; here the results only are given; V. Fock carried
out the calculations quite independently in Leningrad, before my last
paper was sent in, and also succeeded in deriving the relativistic
equation from a variation principle. Zeitschrift fiir Physik, 38, p. 242,
1926). A correction is therefore necessary; all that can be said
about it at present is that it must have the same significance for
wave mechanics as the  spinning electron” of Uhlenbeck and
Goudsmit has for the older quantum theory dealing with electronic
orbits (p. 63); with this difference, however, that in the latter,
together with the introduction of the  spinning electron ”, the
half-integral form of the azimuthal quantum number must be
postulated ad hoc, in order to avoid serious conflict with experiment
even in the case of hydrogen; while wave mechanics (and also
Heisenberg’s quantum mechanics) necessarily yields halves of odd
integers (German : Halbzahligkeit), and thus gives a hint, from the
very beginning, of that further extension, which under the regime
of the older theory was only shown to be necessary by more compli-
cated phenomena, such as the Paschen-Back effect in hydrogen,
anomalous Zeeman effects, structures of multiplets, the laws of Rontgen
doublets and the analogy between them and the alkali doublets.
Addition in the second (German) edition : the first and second of
the three new papers now added, namely, “ The Compton Effect”” and
“ The Energy-Momentum Theorem for Material Waves ”, are con-
tributions to the four-dimensional relativistic form of wave mechanics
discussed in the above paragraph. In connection with the first of these
papers I should like above all to remark that, as Herr Ehrenfest has
pointed out to me, the figure (p. 128) is incorrect : the pair of wave
trains represented in the right half of the figure should coincide
completely with the pair on the left, in respect of wave length and the
orientation of their planes as well as in breadth of interference fringes
(the broken lines).—The sccond paper, that on “The Energy-
Momentum Theorem ”, throws a strong light on the difficulties which
a merely four-dimensional theory of y-waves comes up against,
despite the formally beautiful possibilities of development which
present themselves here.—In the last paper, on “ The Exchange of

1 Cf. also a paper by W, Gordon on the Compton Effect, Ztschr. f. Phys. 40, p. 117, 1926.
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Energy according to Wave Mechanics ”’, the many-dimensional, non-
relativistic form 1s again used. This paper is a first attempt to find
out whether, with reference to Heisenberg’s important discovery of
the ““ quantum mechanics resonance phenomenon ”, it should not e
possible to regard those very phenomena which seem to be decisive
evidence for the existence of discrete energy levels, without this
hypothesis, merely as resonance phenomena.
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Quantisation as a Problem of

Proper Values (Part I)

(Annalen der Physik (4), vol. 79, 1926)

§ 1. In this paper I wish to consider, first, the simple case of the
hydrogen atom (non-relativistic and unperturbed), and show that the
customary quantum conditions can be replaced by another postulate,
in which the notion of ““ whole numbers ”’, merely as such, is not intro-
duced. Rather when integralness does appear, it arises in the same
natural way as it does in the case of the node-numbers of a vibrating
string. The new conception is capable of generalisation, and strikes,
I believe, very deeply at the true nature of the quantum rules.

The usual form of the latter is connected with the Hamilton-Jacobi
differential equation,

M H(g,

A solution of this equation is sought such as can be represented as the
sum of functions, each being a function of one only of the independent
variables ¢.

Here we now put for S a new unknown i such that it will appear
as a product of related functions of the single co-ordinates, ¢.c. we put

@) S =K log .

_ The constant K must be introduced from considerations of
dimensions ; it has those of action. Hence we get

' K o
(1) H<q, J 8q>_E’

Now we do not look for a solution of equation (1’), but proceed as
follows. If we neglect the relativistic variation of mass, equation (1)
can always be transformed so as to become a quadratic form (of  and
its first derivatives) equated to zero. (For the one-electron problem

(0 894) 1 B

os

oq

>=E.
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this holds even when mass-variation is not neglected.) We now seek
a function i, such that for any arbitrary variation of it the mtegra]
of the said quadratic form, taken over the whole co-ordinate space,’
is stationary, ¢ being everywhere real, single-valued, finite, and con-
tinuously differentiable up to the second order. The quantum conditions
are replaced by this variation problem.

First, we will take for H the Ilamilton function for Keplerian
motion, and show that i can be so chosen for all positive, but only for
a discrete set of negative valucs of K. That is, the above variation
problem has a discrete and a continuous spectrum of proper values.

The discrete spectrum corresponds to the Balmer terms and the
continuous to the energies of the hyperbolic orbits. For numerical
agreement K must have the value /27

The choice of co-ordinates in the formation of the variational equa-
tions being arbitrary, let us take rcctangular Cartesians. Then (1)
becomes in our case

) (o) Gy () = s =0

e =charge, m =mass of an electron, 12 =%+ y? + 2%
Our variation problem then reads

@) 87 =5 [azdy o Go) (af) () Ta(m+ -

the integral being taken over all space. From this we find in the
usual way

4) 187 = fdf&p / / /dxd?,dz&/,h (B4 )l/,;]:o.

Therefore we must have, firstly,

(5) i+ (B =0,
and secondly, R
() Jarsugt -

df is an element of the infinite closed surface over which the integral
is taken.

(It will turn out later that this last condition requires us to
supplement our problem by a postulate as to the behaviour of &y
at infinity, in order to ensure the existence of the above-mentioned
continuous spectrum of proper values. See later.)

The solution of (5) can be effected, for example, in polar co-ordinates,
r, 0, ¢, if Y be written as the product of three functions, each only of
r, of 6, or of . The method is sufficiently well known. The function
of the angles turns out to be a surfuce harmonic, and if that of » be
called x, we get easily the differential equation,

1 I am aware this formulation is not entirely unambiguous.
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d* 2dx (2mE 2me* n(n+1)
M P )
n=0,1,2,3 ...

The limitation of n to integral values is necessary so that the
surface harmonic may be single-valued. We require solutions of (7)
that will remain finite for all non-negative real values of 7. Now!
equation (7) has two singularities in the complex r-plane, at r=0 and
r =00, of which the second is an ““ indefinite point ”’ (essential singularity)
of all integrals, but the first on the contrary is not (for any integral).
These two singularities form exactly the bounding points of our real
tnterval. In such a case it is known now that the postulation of the
Sfiniteness of x at the bounding points is equivalent to a boundary
condition. The equation has in general no integral which remains
finite at both end points; such an-integral-exists only for certain
special values of the constants in the equation. It is now a question
of defining these special values. This is the jumping-off point of the
whole investigation.?

Let us examine first the singularity at r=0. The so-called
tndicial equation which defines the behaviour of the integral at this
point, is

x=0.

@®) plp—1)+2p-n(n+1)=0,
with roots :
(8" p1=n, py=—(n+1).

The two canonical integrals at this point have therefore the ex-
ponents » and —(n+1). Since » is not negative, only the first of these
1s of use to us. Since it belongs to the greater exponent, it can be re-
presented by an ordinary power series, which begins with »%. (The other
integral, which does not interest us, can contain a logarithm, since the
difference between the indices is an integer.) The next singularity is
at infinity, so the above power series is always convergent and repre-
sents a transcendental integral function. We therefore have established
that :

The required solution is (except for a constant factor) a single-valued
definite transcendental integral function, which at r=0 belongs to the
exponent n.

We must now investigate the behaviour of this function at infinity
on the positive real axis. To that end we simplify equation (7) by the
substitution

9) x=rU,
where a is so chosen that the term with 1/r2 drops out. It is easy

to verify that then a must have one of the two values n, —(n+1).
Equation (7) then takes the form,
! For guidance in the treatment of (7) I owe thanks to Hermann Weyl.

2 For unproved propositions in what follows, see L. Schlesinger’s Differential
Equations (Collection Schubert, No. 13, Géschen, 1900, especially chapters 3 and 5).
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™) @ 2(a+1)dU 2m
T T dar TR
Its integrals belong at r =0 to the exponents 0 and —2a-1. For
the a-value, a =n, the first of these integrals, and for the second a-value,
a= —(n+1), the second of these integrals is an integral function and
leads, according to (9), to the desired solution, which is single-valued.
We therefore lose nothing if we confine ourselves to one of the two
a-values. Take, then,

(10) a=mn.

Our solution U then, at r =0, belongs to the exponent 0. Equation
(7) is called Laplace’s equation. The general type is

(2+%)v=0.

" " 81 ’ €, _
(™) U +<80+%>U +(€0+.T>U_O_
Here the constants have the values
2mB 2mne?
(11) 8o=0, 8;=2(a+1), €= € ="

Kz R

This type of equation is comparatively simple to handle for this reason :
The so-called Laplace’s transformation, which in general leads again
to an equation of the second order, here gives one of the first. This
allows the solutions of (7”) to be represented by complex integrals.
The result ! only is given here. The integral

(12) U=|e"(z~c)" 1z —cy)1dz

L
is a solution of (7”) for a path of integration L, for which

(13) /L;lli[“"(z o)z — o))z =

The constants ¢, ¢, a,, a; have the following values. ¢, and ¢,
are the roots of the quadratic equation

(14) 22+ 82 + €, =0,
and

' _atde __atdiey
(14) ay =0, g, GLO

In the case of equation (7’) these become, using (11) and (10),

” A_ ——ﬁE‘ _ -2mb
(14) o=+ [TIRE o= [TIME,

a me? ———+n+1, ay= me?_ e+ 1+ 1,
e K\/ omE *" TKv-2mE
+

The representation by the integral (12) allows us, not only to
survey the asymptotic behaviour of the totality of solutions when 7

1 Cf. Schlesinger. The theory is due to H. Poincaré and J. Horn.
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tends to infinity in a definite way, but also to give an account of this
behaviour for one definite solution, which is always a much more
difficult task.

We shall at first exclude the case where a, and a, are real integers.
When this occurs, it occurs for both quantities simultaneously, and
when, and only when,

(15)

=a real integer.

K\/2

Therefore we assume that (15) is not fulfilled.

The behaviour of the totality of solutions when 7 tends to infinity
in a definite manner—we think always of » becoming infinite through
real positive values—is characterised ! by the behaviour of the two
linearly independent solutions, which we will call U, and U,, and
which are obtained by the followmg spectalisations Of the path of
integration L. In each case let z come from infinity and return there
along the same path, in such a direction that
(16) lim e =0,

Z—> 0
t.e. the real part of zr is to become negative and infinite. In this way
condition (13) is satisfied. In the one case let z make a circuit once round
the point ¢, (solution U,), and in the other, round ¢, (solution U,).

Now for very large real positive values of r, these two solutions
are represented asymptotically (in the sense used by Poincaré) by
am [Ur~ermr=a( = 1)n(e*r = 1)1(a,)(0, - e,

(Ua~eres( = 1)s(e®mios ~ 1) [(ay)(cy — €)Y,
in which we are content to take the first term of the asymptotic series
of integral negative powers of r.

We have now to distinguish between the two cases.

1. £>0, This guarantees the non-fulfilment of (15), as it makes the
left hand a pure imaginary. Further, by (14"), ¢, and ¢, also become
pure imaginaries. The exponential functions in (17), since 7 is real,
are therefore periodic functions which remain finite. The values of
a; and a, from (14”) show that both U, and U, tend to zero like r="-L.
This must therefore be valid for our transcendental integral solution U, whose
behaviour we are investigating, however it may be linearly compounded
from U, and U, Further, (9) and (10) show that the function y, 7.e.
the transcendental integral solution of the original equation (7), always
tends to zero like 1/r, as it arises from U through multiplication by
7. We can thus state :

The Eulerian differential equation (5) of our variation problem has,
Jor every positive E, solutions, which are everywhere single-valued, finite,
and continuous ; and which tend to zero with 1/r at infinity, under con-
tinual oscillations. The surface condition (6) has yet to be discussed.

1 If (15) is satisfied, at least one of the two paths of integration described in the
text cannot be used, as it yields a vanishing result.
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2. E<0. Inthis case the possibility (15) is not eo ¢pso excluded, yet
we will maintain that exclusion provisionally. Then by (14”) and (17),
for r—> oo ,U, grows beyond all limits, but U, vanishes exponentially.
Our integral function U (and the same is true for x) will then remain
finite if, and only if, U is identical with U,, save perhaps for a numerical
factor. This, however, can mever be, as is proved thus: If a closed
circuit round both points ¢; and ¢, be chosen for the path L, thercby
satisfying condition (13) since the circuit is really closed on the Riemann
surface of the integrand, on account of a; +a, being an integer, then it
is easy to show that the integral (12) represents our integral function
U. (12) can be developed in a scries of positive powers of 7, which
converges, at all events, for r sufficiently small, and since it satisfies
equation (7’), it must coincide with the series for U. Therefore U is
represented by (12) if L be a closed circuit round bhoth points ¢, and c¢,.
This closed circuit can be so distorted, however, as to make it appear
additively combined from the two paths, considered above, which
belonged to U, and U,; and the factors are non-vanishing, 1 and
e?ria, - Therefore U cannot coincide with U,, but must contain also U,.
Q.E.D.

Our integral function U, which alone of the solutions of (7') is
considered for our problem, is therefore not finite for » large, on the
above hypothesis. Reserving meanwhile the question of completeness,
i.e. the proving that our treatment allows us to find all the linearly
independent solutions of the problem, then we may state :

For negative values of E which do not satisfy condition (15) our
variation problem has no solution.

We have now only to investigate that discrete set of negative
Li-values which satisfy condition (15). a, and a, are then both integers.
The first of the integration paths, which previously gave us the funda-
mental values U, and U,, must now undoubtedly be modified so as to
give a non-vanishing result. For, since a, -1 is certainly positive, the
point ¢, is neither a branch point nor a pole of the integrand, but an
ordinary zero. The point ¢, can also become regular if a, — 1 is also not
negative. In every case, however, two suitable paths are readily found
and the integration effected completely in terms of known functions,
so that the behaviour of the solutions can be fully investigated.

Let

me?
15’ M 1 1=1,2,3,4 .
w Kv =2mE
Then from (14”) we have
(14" a,=1l=l+n, ay—1=-l+n.

Two cases have to be distinguished : ! <n and I>n.

(@) l<n. Then ¢, and ¢, lose every singular character, but instead
become starting-points or end-points of the path of integration, in order
to fulfil condition (13). A third characteristic point here is at infinity
(negative and real). Every path between two of these three points
yields a solution, and of these three solutions there are two linearly in-
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dependent, as is easily confirmed if the integrals are calculated out. In
particular, the transcendental integral solution is given by the path from
¢; to ;. That this integral remains regular at » =0 can be seen at once
without calculating it. I emphasize this point, as the actual calculation
is apt to obscure it. However, the calculation does show that the
integral becomes indefinitely great for positive, infinitely great values
of 7. One of the other two integrals remains finite for r large, but it
becomes infinite for r =0,

Therefore when I % we get no solution of the problem.

(b) I>n. Thenfrom (14'"), ¢, is a zero and ¢, a pole of the first order
at least of the integrand. Two independent integrals are then obtained :
one from the path which leads from z= — w0 to the zero, intentionally
avoiding the pole; and the other from the residue at the pole. The
latter is the integral function. We will give its calculated value,
but multiplied by ", so that we obtain, according to (9) and (10), the
solution x of the original equation (7). (The multiplying constant is
arbitrary.) We find

Vo =2mb\ L, _xl"l“l(—2x)’“<l+n >
) 2t (V) et )
Tt is seen that this is a solution that can be utilised, since it remains
finite for all real non-negative values of . In addition, it satisfies the
surface condition (6) because of its vanishing exponentially at infinity.
Collecting then the results for % negative :

For E negative, our variation problem has solutions if, and only if,
E satisfies condition (15). Only values smaller than U (and there is
always at least one such at our disposal) can be giwen to the integer n,
which denotes the order of the surface harmonic appearing in the equation.
The part of the solution depending on r 1s given by (18).

Taking into account the constants in the surface harmonic (known
to be 2n + 1 in number), it is further found that :

The discovered solution has exactly 2n + 1 arbitrary constants for any
permissible (n, 1) combination ; and therefore for a prescribed value of 1
has 12 arbitrary constants.

We have thus confirmed the main points of the statements originally
made about the proper-value spectrum of our variation problem, but
there are still deficiencies.

Firstly, we require information as to the completeness of the
collected system of proper functions indicated above, but I will not
concern myself with that in this paper. From experience of similar
cases, it may be supposed that no proper value has escaped us.

Secondly, it must be remembered that the proper functions,
ascertained for E positive, do not solve the variation problem as
originally postulated, because they only tend to zero at infinity as 1/r,
and therefore 0y/or only tends to zero on an infinite sphere as 1/r%
Hence the surface integral (6) is still of the same order as 3¢ at infinity.
If it is desired therefore to obtain the continuous spectrum, another
condition must be added to the problem, viz. that & is to vanish at
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infinity, or at least, that it tends to a constant value independent of
the direction of proceeding to infinity ; in the latter case the surface
harmonics cause the surface integral to vanish.

§ 2. Condition (15) yields

met
(19) ~Ei= gk
Therefore the well-known Bohr energy-levels, corresponding to the

Balmer terms, are obtained, if to the constant K, introduced into (2)
for reasons of dimensions, we give the value

(20) K=,
2
from which comes
, 2mme?
(19") —Ei=—p

Our [ is the principal quantum number. #+1 is analogous to the
azimuthal quantum number. The splitting up of this number through
a closer definition of the surface harmonic can be compared with the
resolution of the azimuthal quantum into an ‘ equatorial ” and a
“polar” quantum. These numbers here define the system of node-
lines on the sphere. Also the “radial quantum number ” [-n -1
gives exactly the number of the ‘node-spheres”, for it is easily
established that the function f(z) in (18) has exactly I —n —1 positive
real roots. The positive E-values correspond to the continuum of
the hyperbolic orbits, to which one may ascribe, in a certain sense, the
radial quantum number co. The fact corresponding to this is the
proceeding to infinity, under conttnual oscillations, of the functions in
question,

It is interesting to note that the range, inside which the functions
of (18) differ sensibly from zero, and outside which their oscillations die
away, is of the general order of magnitude of the major axis of the
ellipse in each case. The factor, multiplied by which the radius
vector enters as the argument of the constant-free function f, is—
naturally—the reciprocal of a length, and this length is

K Ki  rl

1) L VimE me dmtme = 1

where a,= the semi-axis of the lth elliptic orbit. <The equations follow

—e2
from (19) plus the known relation I, = ~2~ae;>.
The quantity (21) gives the order of magnitude of the range of the
roots when [ and n are small; for then it may be assumed that the
roots of f(z) are of the order of unity. That is naturally no longer the
case if the coefficients of the polynomial are large numbers. At present
I will not enter into a more exact evaluation of the roots, though I
believe it would confirm the above assertion pretty thoroughly.
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§3. It is, of course, strongly suggested that we should try to
connect the function ¢ with some wvibration process in the atom, which
would more nearly approach reality than the electronic orbits, the real
existence of which is being very much questioned to-day. I originally
intended to found the new quantum conditions in this more intuitive
manner, but finally gave them the above neutral mathematical form,
because it brings more clearly to light what is really essential. The
essential thing seems to me to be, that the postulation of “whole
numbers ” no longer enters into the quantum rules mysteriously, but
that we have traced the matter a step further back, and found the
“integralness ”’ to have its origin in the finiteness and single-valuedness
of a certain space function.

I do not wish to discuss further the possible representations of the
vibration process, before more complicated cases have been calculated
successfully from the new stand-point. It is not decided that the
results will merely re-echo those of the usual quantum theory. For
example, if the relativistic Kepler problem be worked out, it 1s found
to lead in a remarkable manner to half-integral partial quanta (radial
and azimuthal).

Still, a few remarks on the representation of the vibration may be
permitted. Above all, I wish to mention that I was led to these
deliberations in the first place by the suggestive papers of M. Louis de
Broglie,* and by reflecting over the space distribution of those ““ phase
waves ”’, of which he has shown that there is always a whole number,
measured along the path, present on each period or quasi-period of
the electron. The main difference is that de Broglie thinks of pro-
gressive waves, while we are led to stationary proper vibrations if
we interpret our formulae as representing vibrations. I have lately
shown 2 that the Einstein gas theory can be based on the considera-
tion of such stationary proper vibrations, to which the dispersion law
of de Broglie’s phase waves has been applied. The above reflections
on the atom could have been represented as a generalisation from
those on the gas model.

If we take the separate functions (18), multiplied by a surface
harmonic of order =, as the description of proper vibration pro-
cesses, then the quantity Z must have something to do with the
related frequency. Now in vibration problems we are accustomed to
the ““ parameter ” (usually called A) being proportional to the square
of the frequency. However, in the first place, such a statement in
our case would lead to vmaginary frequencies for the negative E-values,
and, secondly, instinct leads us to believe that the energy must be
proportional to the frequency itself and not to its square.

The contradiction is explained thus. There has been no natural zero
level laid down for the * parameter” E of the variation equation (5),
especially as the unknown function ¢ appears multiplied by a function
of r, which can be changed by a constant to meet a corresponding

1 L. do Broglie, Ann. de Physique (10) 3, p. 22, 1925. (Théses, Paris, 1924.)
2 Physik. Ztschr. 27, p. 95, 1926.
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change in the zero level of E. Consequently, we have to correct our
anticipations, in that not F itself—continuing to use the same termino-
logy—but E increased by a certain constant is to be expected to be
proportional to the square of the frequency. Let this constant be
now very great compared with all the admissible negative E-values
(which are already limited by (15)). Then firstly, the frequencies
will become 7eal, and secondly, since our E-values correspond to only
relatively small frequency differences, they will actually be very approxi-
mately proportional to these frequency differences. This, again, is all
that our “ quantum-instinct ” can require, as long as the zero level of
energy is not fixed.
The view that the frequency of the vibration process is given by

’

(22) v=0’\/C+E=C’\/C+§§O
where C is a constant very great compared with all the E’s, has still
another very appreciable advantage. It permits an understanding of
the Bohr frequency condition. According to the latter the emission
Jfrequencies are proportional to the E-differences, and therefore from
(22) also to the differences of the proper frequencies v of those
hypothetical vibration processes. But these proper frequencies are all
very great compared with the emission frequencies, and they agree very
closely among themselves. The emission frequencies appear therefore
as deep ““difference tones” of the proper vibrations themselves. It
is quite conceivable that on the transition of energy from one to
another of the normal vibrations, something—I mean the light wave—
with a frequency allied to each frequency difference, should make its
appearance. One only needs to imagine that the light wave is causally
related to the beats, which necessarily arise at each point of space
during the transition ; and that the frequency of the light is defined
by the number of times per second the intensity maximum of the
beat-process repeats itself.

It may be objected that these conclusions are based on the relation
(22), in its approwimate form (after expansion of the square root), from
which the Bohr frequency condition itself seems to obtain the nature
of an approximation. This, however, is merely apparently so, and it
is wholly avoided when the relativistic theory is developed and makes
a profounder insight possible. The large constant C is naturally very
intimately connected with the rest-energy of the electron (mc?). Also
the seemingly new and independent introduction of the constant A
(already brought in by (20)), into the frequency condition, is cleared
up, or rather avoided, by the relativistic theory. But unfortunately
the correct establishment of the latter meets right away with certain
difficulties, which have been already alluded to.

It is hardly necessary to emphasize how much more congenial
it would be to imagine that at a quantum transition the energy
changes over from one form of vibration to another, than to think

E+...
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of a jumping electron. The changing of the vibration form can
take place continuously in space and time, and it can readily last as
long as the emission process lasts empirically (experiments on canal
rays by W. Wien) ; nevertheless, if during thig transition the atoin
is placed for a comparatively short time in an electric field which alters
the proper frequencies, then the beat frequencies are immediately
changed sympathetically, and for just as long as the field operates.
It is known that this experimentally established fact has hitherto
presented the greatest difficulties. See the well-known attempt at a
solution by Bohr, Kramers, and Slater.

Let us not forget howover in our gratification over our progress in
these matters, that the idea of only one proper vibration being excited
whenever the atom does not radiate—if we must hold fast to this
idea—is very far removed from the natural picture of a vibrating
system. We know that a macroscopic system does not behave like
that, but yields in general a pot-pourri of its proper vibrations. But
we should not make up our minds too quickly on this point. A
pot-pourri of proper vibrations would also be permissible for a single
atom, since thereby no beat frequencies could arise other than those
which, according to experience, the atom is capable of emitting
occastonally. The actual sending out of many of these spectral lines
simultaneously by the same atom does not contradict experience. It
is thus conceivable that only in the normal state (and approximately
in certain ‘ meta-stable ”’ states) the atom vibrates with one proper
frequency and just for this reason does not radiate, namely, because no
beats arise. The stvmulation may consist of a simultaneous excitation
of one or of several other proper frequencies, whereby beats originate
and evoke emission of light.

Under all circumstances, I believe, the proper functions, which
belong to the same frequency, are in general all simultaneously stimu-
lated. Multipleness of the proper values corresponds, namely, in the
language of the previous theory to degeneration. To the reduction
of the quantisation of degenerate systems probably corresponds the
arbitrary partition of the energy among the functions belonging to
one proper value.

Addution at the proof correction on 28.2.1926.

In the case of conservative systems in classical mechanics, the
variation problem can be formulated in a neater way than was previously
shown, and without express reference to the Hamilton-Jacobi differ-
ential equation. Thus, let T' (g, p) be the kinetic energy, expressed
as a function of the co-ordinates and momenta V the potential energy,
and dr the volume element of the space, “ measured rationally 7, 1.e.
it is not simply the product dg, dg, dgy . . . dgn, but this divided by
the square root of the discriminant of the quadratic form T (q, p).
(Cf. Gibbs’ Statistical Mechanics.) Then let i be such as to make the
“ Hamilton integral ”
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ol O
(23) /dr{lle (1, 8,1)+¢2V}

stationary, while fulfilling the normalising, accessory condition

24) [ Yedr=1.

The proper values of this variation problem are then the stationary
values of integral (23) and yield, according to our thesis, the quantum-
levels of the energy.

It is to be remarked that in the quantity a, of (14”) we have

essentially the well-known Sommerfeld expression ~it vC. (Cf.
Atombau, 4th (German) ed., p. 775.)

Physical Institute of the University of Ziirich.
(Received January 27, 1926.)



Quantisation as a Problem of

Proper Values (Part II)

(Annalen der Physik (4), vol. 79, 1926)

§ 1. The Hamiltonian Analogy between Mechanics and Optics

BerorE we go on to consider the problem of proper values for
further special systems, let us throw more light on the general
correspondence which exists between the Hamilton-Jacobi differential
equation of a mechanical problem and the “allied” wave equation,
t.e. equation (5) of Part I. in the case of the Kepler problem. So
far we have only briefly described this correspondence on its external
analytical side by the transformation (2), which is in itself unin-
telligible, and by the equally incomprehensible transition from the
equating to zero of a certain expression to the postulation that the
space integral of the said expression shall be stattonary.

The vnner connection between Hamilton’s theory and the process
of wave propagation is anything but a new idea. It was not only well
known to Hamilton, but it also served him as the starting-point for
his theory of mechanics, which grew 2 out of his Optics of Non-
homogeneous Media. Hamilton’s variation principle can be shown to
correspond to Fermat’s Principle for a wave propagation in con-
figuration space (g-space), and the Hamilton-Jacobi equation expresses
Huygens’ Principle for this wave propagation. Unfortunately this
powerful and momentous conception of Hamilton is deprived, in
most modern reproductions, of its beautiful raiment as a superfluous
accessory, in favour of a more colourless representation of the
analytical correspondence.®

! This procedure will not be pursued further in the present paper. It was only
intended to give a provisional, quick survey of the external connection between the
wave equation and the Hamilton-Jacobi equation. y is not actually the action
function of a definite motion in the relation stated in (2) of Part 1. On the other
hand the connection between the wave equation and the variation problem is of
course very real ; the integrand of the stationary integral is the Lagrange function
for the wave process.

2 Cf. e.g. K. T. Whittaker’s Anal. Dynamics, chap. xi.

3 Felix Klein has since 1891 repeatedly developed the theory of Jacobi from quasi-
ggtioal considerations in non-Kuclidean higher space in his lectures on meechanics.

. F. Klein, Jakresber. d. Deutsch. Math. Ver.1, 1801, and Zeits. f. Math, u. Phys. 46,

13
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Let us consider the general problem of conservative systems in
classical mechanics. The Hamilton-Jacobi equation runs

oW oW
(1) o +T<q;,-, % >+V(qk)=0.

&
W is the action function, 7.e. the time integral of the Lagrange function
T -V along a path of the system as a function of the end points
and the time. ¢ is a representative position co-ordinate; I'is the
kinetic energy as function of the ¢’s and momenta, being a quadratic
form of the latter, for which, as prescribed, the partial derivatives
of W with respect to the ¢’s are written. V is the potential energy.
To solve the equation put

U = - Bt +S(qn),
and obtain
ow
’ om N=9(F —
(1) 91 <qk, aqk> oL - V).

E is an arbitrary integration constant and signifies, as is known, the
energy of the system. Contrary to the usual practice, we have let the
function W remain itself in (1’), instead of introducing the time-free
function of the co-ordinates, S. That is a mere superficiality.

Equation (1’) can now be very simply expressed if we make use of
the method of Heinrich Hertz. It becomes, like all geometrical
assertions in configuration space (space of the variables ¢x), especially
simple and clear if we introduce into this space a non-Euclidean metric
by means of the kinetic energy of the system.

Let T be the kinetic energy as function of the velocities gi, not of
the momenta as above, and let us put for the line element
3) ds®=2T (qz, Ge)de®.

The right-hand side now contains d¢ only externally and represents
(since gdt =dg;) a quadratic form of the dgy’s.

After this stipulation, conceptions such as angle between two line
elements, perpendicularity, divergence and curl of a vector, gradient
of a scalar, Laplacian operation (=div grad) of a scalar, and others,
may be used in the same simple way as in three-dimensional KEuclidean
space, and we may use in our thinking the Euclidean three-dimensional
representation with impunity, except that the analytical expressions
for these ideas become a very little more complicated, as the line
element (3) must everywhere replace the Euclidean line element. We
stipulate, that in what follows, all geometrical statements in q-space are
to be taken in this non-Buclidean sense.

One of the most important modifications for the calculation is

1901 (Ges.-Abh. ii. pp. 601 and 603). In the second note, Klein remarks reproachfully
that his discourse at Halle ten years previously, in which he had discussed this corre-
spondence and emphasized the great significance of Hamilton’s optical works, had
‘““not obtained the general attention, which he had expected . For this allusion
to F. Klein, I am indebted to a friendly communication from Prof. Sommerfeld.
See also Atombau, 4th ed., p. 803.
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that we must distinguish carefully between covariant and contra-
variant components of a vector or tensor. But this complication is
not any greater than that which occurs in the case of an oblique set
of Cartesian axes.

The dgi’s are the prototype of a contravariant vector. The co-
efficients of the form 27, which depend on the ¢;’s, are therefore of a
covariant character and form the covariant fundamental tensor. 27T
is the contravariant form belonging to 27, because the momenta are
known to form the covariant vector belonging to the speed vector gy,
the momentum being the velocity vector in covariant form. The
left side of (1) is now simply the contravariant fundamental form,
in which the a@q ’s are brought in as variables. The latter form phe
components of the vector,—according to its nature covariant,

grad W.

(The expressing of the kinetic energy in terms of momenta instead
of speeds has then this significance, that covariant vector components
can only be introduced in a contravariant {form if something intelligible,
1.e. invariant, is to result.)

Equation (1’) is equivalent thus to the simple statement

(") (grad W)2=2(K - V),
or
(r" lgrad W |= \/Q(E: V)

This requirement is easily analysed. Suppose that a function W, of
the form (2), has been found, which satisfies it. Then this function
can be clearly represented for every definite ¢, if the family of surfaces
W =const. be described in g-space and to each member a value of W
be ascribed.

Now, on the one hand, as will be shown immediately, equation
(1"") gives an exact rule for constructing all the other surfaces of the
family and obtaining their W-values from any single member, if the
latter and 1ts W-value s known. On the other hand, if the sole
necessary data for the construction, viz. one surface and its W-value
be given quite arbitrarily, then from the rule, which presents just two
alternatives, there may be completed one of the functions W fulfilling
the given requirement. Provisionally, the time is.regarded as con-
stant.—The construction rule therefore exhausts the contents of the
differential equation ; each of its solutions can be obtained from
a suitably chosen surface and W-value.

Let us consider the construction rule. Let the value W, be given
in Fig. 1 to an arbitrary surface. In order to find the surface W, +dW,,
take either side of the given surface as the positive one, erect the normal
at each point of it and cut off (with due regard to the sign of dW,) the
step

4) ds=—-=--2—..
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The locus of the end points of the steps is the surface Wy+dW,.
Similarly, the family of surfaces may be constructed successively on
both sides.

The construction has a double interpretation, as the other side of
the given surface might
have been taken as posi-
tive for the first step.
This ambiguity does not
hold for later steps, t.e.
at any later stage of

W,+d W, the process we cannot

, change arbitrarily the

W,-d # sign of the sides of the

surface, at which we

have arrived, as this

Fia. 1. would involve in general

a discontinuity in the

first differential coefficient of W. Moreover, the two families obtained

in the two cases are clearly identical ; the W-values merely run in the
opposite direction.

Let us consider now the very simple dependence on the ¢eme. For
this, (2) shows that at any later (or earlier) instant ¢ +¢', the same group
of surfaces illustrates the W-distribution, though different W-values
are associated with the individual members, namely, from each W-value
ascribed at time ¢ there must be subtracted Et'. The W-values wander,
as it were, from surface to surface according to a definite, simple law,
and for positive ¥ in the direction of W increasing. Instead of this,
however, we may imagine that the surfaces wander in such a way that
each of them continually takes the place and exact form of the following
one, and always carries its W-value withit. The rule for this wandering
is given by the fact that the surface W, at time ¢+dt must have
reached that place, which at ¢ was occupied by the surface W+ Edt.
This will be attained according to (4), if each point of the surface W,
is allowed to move in the direction of the positive normal through a
distance

- -

©) STVAE-VY
That is, the surfaces move with a normal velocity
(6) w-t_ I

&~ VHE- T
which, when the constant E is given, is a pure function of position.
Now it is seen that our system of surfaces W =const. can be con-
ceived as the system of wave surfaces of a progressive but stationary

wave motion in g-space, for which the value of the phase velocity at
every point in the space is given by (6). For the normal construction
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can clearly be replaced by the construction of elementary Huygens
waves (with radius (5)), and then of their envelope. The *index of
refraction ”’ is proportional to the reciprocal of (6), and is dependent
on the position but not on the direction. The g-space is thus optic-
ally non-homogeneous but is isotropic. The elementary waves are
“ spheres ”, though of course—let me repeat it expressly once more—
in the sense of the line-element (3).

The function of action W plays the part of the phase of our wave
system. The Hamilton-Jacob1 equation is the expression of Huygens’
principle. If, now, Fermat’s principle be formulated thus,

P

P, 2 ta ta

M 0= f s _s I dsv2AB-V) _5 ( 2T - 18( aTd,
u E E o

P, Jr, v, Ji,
we are led directly to ITamilton’s principle in the form given by
Maupertuis (where the time integral is to be taken with the usual
grain of salt, 4.e. T'+V =E =constant, even during the variation).
The ““ rays ”, ¢.e. the orthogonal trajectories of the wave surfaces, are
therefore the paths of the system for the value I of the energy, in
agreement with the well-known system of equations

ow
(8) Pe= o
which states, that a set of system paths can be derived from each
special function of action, just like a fluid motion from its velocity
potential.l (The momenta p; form the covariant velocity vector,
which equations (8) assert to be equal to the gradient of the function
of action.)

Although in these deliberations on wave surfaces we speak of
velocity of propagation and Huygens’ principle, we must regard the
analogy as one between mechanics and geometrical optics, and not
physical or undulatory optics. For the idea of ““rays ”’, which is the
essential feature in the mechanical analogy, belongs to geometrical
optics ; it is only clearly defined in the latter. Also Fermat’s principle
can be applied in geometrical optics without going beyond the idea
of index of refraction. And the system of W-surfaces, regarded as
wave surfaces, stands in a somewhat looser relationship to mechanical
motion, inasmuch as the image point of the mechanical system in
no wise moves along the ray with the wave velocity u, but, on the

contrary, its velocity (for constant E) is proportional to i It is given
directly from (3) as

ds 7 e
(9) v =d: =V2T =v2(E=V).

1 See especially A, Einstein, Verh. d. D. Physik. Ges. 19, pp. 77, 82, 1917. The
framing of the quantum conditions here is the most akin, out of all the older attempts,
to tho present one. De Broglie has returned to it.

(D 894) o)
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This non-agreement is obvious. Firstly, according to (8), the system’s
point velocity is great when grad W is great, v.e. where the W-surfaces
are closely crowded together, ¢.e. where » is small. Secondly, from the
definition of W as the time integral of the Lagrange function, W
alters during the motion (by (7' —V)d¢ in the time dt), and so the
image point cannot remain continuously in contact with the same
W-surface.

And important ideas in wave theory, such as amplitude, wave
length, and frequency—or, speaking more generally, the wave form—do
not enter into the analogy at all, as there exists no mechanical parallel ;
even of the wave function itself there is no mention beyond that W
has the meaning of the phase of the waves (and this is somewhat hazy
owing to the wave form being undefined).

If we find in the whole parallel merely a satisfactory means of
contemplation, then this defect is not disturbing, and we would regard
any attempt to supply it as idle trifling, believing the analogy to be
precisely with geometrical, or at furthest, with a very primitive form
of wave optics, and not with the fully developed undulatory optics.
That geometrical optics is only a rough approximation for Light makes
no difference. To preserve the analogy on the further development of
the optics of g-space on the lines of wave theory, we must take good
care not to depart markedly from the limiting case of geometrical
optics, .. must choose * the wave length sufficiently small, ¢.e. small
compared with all the path dimensions. Then the additions do not
teach anything new; the picture is only draped with superfluous
ornaments.

So we might think to begin with. But even the first attempt at
the development of the analogy to the wave theory leads to such
striking results, that a quite different suspicion arises : we know to-day,
wn fact, that our classical mechanics furls for very small dimensions
of the path and for very great curvatures. Perhaps this failure is in
strict analogy with the failure of geometrical optics, v.e. ““ the optics
of infinitely small wave lengths”’, that becomes evident as soon as the
obstacles or apertures are no longer great compared with the real,
finite, wave length. Perhaps our classical mechanics is the complete
analogy of geometrical optics and as such is wrong and not in agreement
with reality ; it fails whenever the radii of curvature and dimensions
of the path are no longer great compared with a certain wave length,
to which, in g-space, a real meaning is attached. Then it becomes a
question of searching ? for an undulatory mechanics, and the most
obvious way is the working out of the IHamiltonian analogy on the
lines of undulatory optics.

1 Cf. for the optical case, A. Sommerfeld and Iris Runge, Ann. d. Phys. 35, p. 290,
1911. There (in the working out of an oral remark of P. Debye), it is shown, how
the equation of first order and second degree for the phase (‘** Hamiltonian equation )
may be accurately derived from the equation of the second order and first degree
for t}lxle wave function (“ wave equation’), in the limiting case of vanishing wave
ength.

g’ Cf. A. Einstein, Berl. Ber. p. 9 et seq., 1925,
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§ 2. “ Geometrical ” and ‘ Undulatory > Mechanics

We will at first assume that it is fair, in extending the analogy, to
imagine the above-mentioned wave system as consisting of sine waves.
This is the simplest and most obvious case, yet the arbitrariness, which
arises from the fundamental signmificance of this assumption, must be
emphasized. The wave function has thus only to contain the time
in the form of a factor, sin ( . . . ), where the argument is a linear
function of W. The coefficient of W must have the dimensions of the
reciprocal of action, since W has those of action and the phase of a
sine has zero dimensions. We assume that it is quite universal, .e.
that it is not only independent of E, but also of the nature of the

mechanical system. We may then at once denote it by Zhﬂ. The

time factor then is

B 1 .
(10) sin(g-zll +const. > =sin( - i?;f ﬂ’g(q‘) +const. >
Hence the frequency v of the waves is given by
(11) v= g .

Thus we get the frequency of the ¢-space waves to be proportional
to the encrgy of the system, in a manner which is not markedly
artificial.!  This is only true of course if % is absolute and not, as in
classical mechanics, indefinite to the extent of an additive constant.
By (6) and (11) the wave length is independent of this additive constant,
being

u h
(12) A=y V2E-V)
and we know the term under the root to be double the kinctic encrgy.
Let us make a preliminary rough comparison of this wave length
with the dimensions of the orbit of a hydrogen electron as given by
classical mechanics, taking care to notice that a ““step” in ¢-space
has not the dimensions of length, but length multiplied by the square
root of mass, in consequence of (3). A has similar dimensions. We
have therefore to divide A by the dimension of the orbit, @ cm., say,
and by the square root of m, the mass of the electron. The quotient
is of the order of magnitude of

h

—)

moa

where v represents for the moment the electron’s velocity (cm./sec.).
The denominator mwva is of the order of the mechanical moment of
momentum, and this is at least of the order of 10-%7 for Kepler orbits,
as can be calculated from the values of electronic charge and mass

1 In Part I. this appeared merely as an approximate equation, derived from a pure
speculation.
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independently of all quantum theories. We thus obtain the correct
order for the limit of the approximate region of validity of classical
mechanics, if we identify our constant 2 with Planck’s quantum of
action—and this is only a preliminary attempt.
If in (6), E is expressed by means of (11) in terms of v, then we
obtain
hv

(6) ¢ 20 = T)

The dependence of the wave velocity on the energy thus becomes a
particular kind of dependence on the frequency, i.e. it becomes a law
of dispersion for the waves. This law is of great interest. We have
shown in § 1 that the wandering wave surfaces are only loosely con-
nected with the motion of the system point, since their velocities are
not equal and cannot be equal. According to (9), (11), and (6’) the
system’s velocity v has thus also a concrete significance for the wave.
We verify at once that

(13) v=

i.c. the velocity of the system point is that of a group of waves, included
within a small range of frequencies (signal-velocity). We find here
again a theorem for the ‘ phase waves’’ of the electron, which M. de
Broglie had derived, with essential reference to the relativity theory,
in those fine researches,! to which I owe the inspiration for this work.
We see that the theorem in question is of wide generality, and does not
arise solely from relativity theory, but is valid for every conservative
system of ordinary mechanics.

We can utilise this fact to institute a much more innate connection
between wave propagation and the movement of the representative
point than was possible before. We can attempt to build up a wave
group which will have relatively small dimensions in every direction.
Such a wave group will then presumably obey the same laws of motion
as a single image point of the mechanical system. It will then give,
8o to speak, an equivalent of the image point, so long as we can look
on it as being approximately confined to a point, i.e. so long as we can
neglect any spreading out in comparison with the dimensions of the
path of the system. This will only be the case when the path dimen-
sions, and especially the radius of curvature of the path, are very great
compared with the wave length. For, in analogy with ordinary
optics, it is obvious from what has been said that not only must the
dimensions of the wave group not be reduced below the order of
magnitude of the wave length, but, on the contrary, the group must
extend in all directions over a large number of wave lengths, if it is
to be approximately monochromatic. This, however, must be postu-
lated, since the wave group must move about as a whole with a definite

! L. de Broglie, Ann. de Physique (10) 3, p. 22, 1925. (Théscs, Paris, 1924.)
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group velocity and correspond to a mechanical system of definite
energy (cf. equation 11).

So far as I see, such groups of waves can be constructed on exactly
the same principle as that used by Debye?! and von Laue ? to solve
the problem in ordinary optics of giving an exact analytical representa-
tion of a cone of rays or of a sheaf of rays. From this there comes
a very interesting relation to that part of the Hamilton-Jacobi theory
not described in § 1, viz. the well-known derivation of the equations of
motion in integrated form, by the differentiation of a complete integral
of the Hamilton-Jacobi equation with respect to the constants of in-
tegration. As we will see immediately, the system of equations called
after Jacobi is equivalent to the statement : the image point of the
mechanical system continuously corresponds to that point, where a
certain continuum of wave trains coalesces in equal phase.

In optics, the representation (strictly on the wave theory) of a
“sheaf of rays” with a sharply defined finite cross-section, which
proceeds to a focus and then diverges again, is thus carried out by
Debye. A continuum of plane wave trains, each of which alone
would fill the whole space, is superposed. The continuum is produced
by letting the wave normal vary throughout the given solid angle.
The waves then destroy one another almost completely by inter-
ference outside a certain double cone; they represent exactly, on
the wave theory, the desired limited sheaf of rays and also the
diffraction phenomena, necessarily occasioned by the limitation. We
can represent in this manner an wnfinitesimal cone of rays just as
well as a finite one, if we allow the wave normal of the group to
vary only inside an infinitesimal solid angle. This has been utilised
by von Laue in his famous paper on the degrees of freedom of
a sheaf of rays.® Finally, instead of working with waves, hitherto
tacitly accepted as purely monochromatic, we can also allow the
frequency to vary within an infinitesimal interval, and by a suitable
distribution of the amplitudes and phases can confine the disturbance
to a region which is relatively small in the longitudinal direction also.
So we succeed in representing analytically a ““ parcel of energy ” of
relatively small dimensions, which travels with the speed of light,
or when dispersion occurs, with the group velocity. Thereby is given
the instantaneous position of the parcel of energy—if the detailed
structure is not in question—in a very plausible way as that point of
space where all the superposed plane waves meet in eractly agreeing
phase.

We will now apply these considerations to the g-space waves.
We select, at a definite time ¢, a definite point P of g-space, through
which the parcel of waves passes in a given direction R, at that time.
In addition let the mean frequency v or the mean E-value for the packet
be also given. These conditions correspond exactly to postulating
that at a given time the mechanical system is starting from a given

1 P, Debye, Ann. d. Phys. 30, p. 7556, 1909.
2 M. v. Laue, idem 44, p. 1197 (§ 2), 1914. 3 Loc. cit.
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configuration with given velocity components. (Energy plus direc-
tion 1s equivalent to velocity components.)

In order to carry over the optical construction, we require firstly
one set of wave surfaces with the desired frequency, 4.e. one solution
of the Hamilton-Jacobi equation (1°) for the given K-value. This
solution, W, say, is to have the following property: the surface of
the set which passes through P at time ¢, which we may denote by
(14) W =W,
must have its normal at P in the prescribed direction R. But this is
still not enough. We must be able to vary to an infinitely small
extent this set of waves W in an n-fold manner (» =number of degrees
of freedom), so that the wave normal will sweep out an infinitely small
(n - 1) dimensional space angle at the point P, and so that the frequency

will vary in an infinitely small one-dimensional region, whereby

h
care is taken that all members of the infinitely small n-dimensional
continuum of sets of waves meet together at time ¢ in the point P in
exactly agreeing phase. Then it is a question of finding at any other
time where that point lies at which this agreement of phases occurs.

To do this, it will be sufficient if we have at our disposal a solution
W of the Hamilton-Jacobi equation, which is dependent not only on
the constant E, here denoted by a,, but also on (» —1) additional con-
stants a,, ag . . . ap, insuch a way that it cannot be written as a function
of less than # combinations of these n constants. For then we can,
firstly, bestow on a, the value prescribed for I, and, secondly, define
a,, @y . . . &y, S0 that the surface of the set passing through the point P
has at P the prescribed normal direction. Henceforth we understand
by a;, a, . . . an, these values, and take (14) as the surface of this
set, which passes through the point P at time ¢. Then we consider
the conttnuum of sets which belongs to the a;-values of an adjacent
infinitesimal ai-region. A member of this continuum, <.e. therefore
a set, will be given by

ow ow ow
(15) W+a day + P 2do.2+ aq-dan—-const
for a fized set of values of da,, da, . . . da,, and varying constant.

That member of this set, v.e. therefore that single surface, which goes
through P at time ¢ will be defined by the following choice of the const.,

, oW L oW oW
(15) Wegpdayt ... +5 day=TWo+ (d )da, ...+<%—n>dan,

where @EW—,) , etc., are the constants obtained by substituting in the
170

differential coefficients the co-ordinates of the point P and the value ¢

of the time (which latter really only occurs in @LV)
oa,

The surfaces (15’) for all possible sets of values of da,, da, . . . da,,
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form on their part a set. They all go through the point P at time ¢,
their wave normals continuously sweep out a little (n — 1) dimensional
solid angle and, moreover, their /i-parameter also varies within a
small region. The set of surfaces (15") is so formed that each of the
sets (15) supplies one representative to (15'), namely, that member
which passes through P at time ¢.

We will now assume that the phase angles of the wave functions
which belong to the sets (15) happen to agree precisely for those
representatives which enter the set (15'). They agree therefore at
time ¢ at the point P.

We now ask: ls there, at any arbitrary time, a point where all surfaces
of the set (15’) cut one another, and in which, therefore, all the wave
functions which belong to the sets (15) agree in phase ? The answer
is: There exists a point of agreeing phase but it is not the common
intersection of the surfaces of set (18), for such does not exist at any
subsequent arbitrary time. Moreover, the point of phase agreement
arises in such a way that the scts (15) continuously exchange their
representatives given to (15%).

That is shown thus. There must hold

a6 w-wo o =(5%) S-CF) .. -G,

simultaneously for the common meeting point of all members of (15)
at any time, because the da,’s are a,rbltmry within a small region. In
these n + 1 equations, the right-hand sides are constants, and the left
are functions of the n+1 quzmtities TQis Gas « + - Qs L. The equations
are satisfied by the initial system of values, z.e. by the co-ordinates
of P and the initial time ¢t. For another arbitrary value of ¢, they will
have no solutions in ¢, . . . ¢y, but will more than define the system
of these n quantities.

We may proceed, however, as follows. Let us leave the first
equation, W =W,, aside at first, and define the ¢;’s as functions of
the time and the constants according to the remaining » equations.
Let this point be called ¢. By it, naturally, the first equation will
not be satisfied, but the left-hand side will differ from the right by a
certain value. If we go back to the derivation of system (16) from
(15°), what we have just said means that though @ is not a common
point for the set of surfaces (15'), it is so, however, for a set which
results from (15'), if we alter the right-hand side of equation (15)
by an amount which is constant for all the surfaces. Let this new
set be (15”). For it, therefore, @ is a common point. The new set
results from (15), as stated above, by an exchange of the repre-
sentatives in (15’). This exchange is occasioned by the alteration
of the constant in (15), by the same amount, for all representatives.
Hence the phase angle is altered by the same amount for all representa-
tives. The new representatives, ¢.e. the members of the set we have
called (15”), which meet in the point ), agree in phase angle just as
the old ones did. This amounts therefore to saying :
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The point @ which is defined as a function of the time by the n
equations
ow oW ow oW
an Oa, _<8a1>0’ Y Qo \aan)o’
continues to be a point of agreeing phase for the whole aggregate of
wave sets (15).

Of all the n-surfaces, of which @ is shown by (17) to be the common
point, only the first is variable; the others remain fixed (only the
first of equations (17) contains the time). The n -1 fixed surfaces
determine the path of the point @ as their line of intersection. It is
easily shown that this line is the orthogonal trajectory of the set
W =const. For, by hypothesis, W satisfies the Hamilton-Jacobi equa-
tion (1’) identically in ay, a3 . . . an. If we now differentiate the
Hamilton - Jacobi equation with respect to o (£=2, 3, . .. n),

we get the statement that the normal to a surface, 8—(—;=const.,
k

is perpendicular, at every point on it, to the normal of the surface,
W =const., which passes through that point, ¢.e. that each of the two
surfaces contains the normal to the other. If the line of intersection
of the n — 1 fixed surfaces (17) has no branches, as is generally the case,
then must each line element of the intersection, as the sole common
line element of the n —1 surfaces, coincide with the normal of the
W-surface, passing through the same point, .e. the line of intersection
is the orthogonal trajectory of the W-surfaces. Q.E.D.

We may sum up the somewhat detailed discussion, which has led us
to equations (17), in a much shorter or (so to speak) shorthand fashion,

as follows: W denotes, apart from a universal constant <Ilz)’ the

phase angle of the wave function. If we now deal not merely with
one, but with a continuous manifold of wave systems, and if these
are continuously arranged by means of any continuous parameters

a;, then the equations %1—- =const. express the fact that all infinitely
(3

adjacent individuals (wave systems) of this manifold agree in phase.
These equations therefore define the geometrical locus of the points
of agreeing phase. If the equations are sufficient, this locus shrinks
to one point; the equations then define the point of phase agreement
as a function of the time.

Since the system of equations (17) agrees with the known second
system of equations of Jacobi, we have thus shown :

The point of phase agreement for certain infinitesimal manifolds of
wave systems, containing n parameters, moves according to the same laws
as the vmage pownt of the mechanical system.

I consider it a very difficult task to give an exact proof that the
superposition of these wave systems really produces a noticeable
disturbance in only a relatively small region surrounding the point
of phase agreement, and that everywhere else they practically destroy
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one another through interference, or that the above statement turns
out to be true at least for a suitable choice of the amplitudes, and
possibly for a special choice of the form of the wave surfaces. 1 will
advance the physical hypothesis, which I wish to attach to what is
to be proved, without attempting the proof. The latter will only
be worth while if the hypothesis stands the test of trial and if its
application should require the exact proof.

On the other hand, we may be sure that the region to which the
disturbance may be confined still contains in all directions a great
number of wave lengths. This is directly evident, firstly, because so
long as we are only a few wave lengths distant from the point of phase
agrcement, then the agreement of phase is hardly disturbed, as the
interference is still almgst as favourable as it is at the point itself.
Secondly, a glance at the three-dimensional Kuclidean case of ordinary
optics is sufficient to assure us of this general behaviour.

What I now categorically conjecture is the following :

The true mechanical process 1s realised or represented in a fitting
way by the wave processes in ¢-space, and not by the motion of image
pownts in this space. The study of the motion of image points, which
is the object of classical mechanics, is only an approximate treatment,
and has, as such, just as much justification as geometrical or “ray ”
optics has, compared with the true optical process. A macroscopic
mechanical process will be portrayed as a wave signal of the kind
described above, which can approximately enough be regarded as con-
fined to a point compared with the geometrical structure of the path.
We have seen that the same laws of motion hold exactly for such a
signal or group of waves as are advanced by classical mechanics for
the motion of the image point. This manner of treatment, however,
loses all meaning where the structure of the path is no longer very
large compared with the wave length or indeed is comparable with it.
Then we must treat the matter strictly on the wave theory, i.e. we
must proceed from the wave equation and not from the fundamental
equations of mechanics, in order to form a picture of the manifold
of the possible processes. These latter equations are just as useless
for the elucidation of the micro-structure of mechanical processes
as geometrical optics is for explaining the phenomena of diffraction.

Now that a certain interpretation of this micro-structure has been
successfully obtained as an addition to classical mechanics, although
admittedly under new and very artificial assumptions, an interpre-
tation bringing with it practical successes of the highest importance,
it seems to me very significant that these theories—I refer to the
forms of quantum theory favoured by Sommerfeld, Schwarzschild,
Epstein, and others—bear a very close relation to the Hamilton-
Jacobi equation and the theory of its solution, i.c. to that form of
classical mechanics which already points out most clearly the true
undulatory character of mechanical processes. The Hamilton-Jacobi
equation corresponds to Huygens’ Principle (inits old simple form, not
in the form due to Kirchhoff). And just as this, supplemented by
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some rules which are not intelligible in geometrical optics (Fresnel’s
construction of zones), can explain to a great extent the phenomena of
diffraction, so light can be thrown on the processes in the atom by
the theory of the action-function. But we inevitably became involved
in irremovable contradictions if we tried, as was very natural, to
maintain also the idea of paths of systems in these processes; just as
we find the tracing of the course of a light ray to be meaningless, in the
neighbourhood of a diffraction phenomenon.

We can argue as follows. I will, however, not yet give a conclusive
picture of the actual process, which positively cannot be arrived at
from this starting-point but only from an investigation of the wave
equation ; I will merely illustrate the matter qualitatively. Let us
think of a wave group of the nature described above, which in some
way gets into a small closed ““ path ”’, whose dimensions are of the order
of the wave length, and therefore small compared with the dimensions
of the wave group itself. It is clear that then the *“system path ” in
the sense of classical mechanics, 7.e. the path of the point of exact
phase agreement, will completely lose its prerogative, because there
exists a whole continuum of points before, behind, and near the
particular point, in which there is almost as complete phase agreement,
and which describe totally difterent ‘ paths 7. In other words, the
wave group not only fills the whole path domain all at once but also
stretches far beyond it in all directions.

In this sense do I interpret the * phase waves’ which, according
to de Broglie, accompany the path of the electron; in the sense, there-
fore, that no special meaning is to be attached to the electronic path
itself (at any rate, in the interior of the atom),and still less to the position
of the electron on its path. And in this sense I explain the convic-
tion, increasingly evident to-day, firstly, that real meaning has to be
denied to the phase of electronic motions in the atom ; secondly, that
we can never assert that the electron at a definite instant is to be
found on any definite one of the quantum paths, specialised by the
quantum conditions ; and thirdly, that the true laws of quantum
mechanics do not consist of definite rules for the single path, but that
in these laws the elements of the whole manifold of paths of a system
are bound together by equations, so that apparently a certain reciprocal
action exists between the different paths.!

It is not incomprehensible that a careful analysis of the experiment-
ally known quantities should lead to assertions of this kind, if the experi-
mentally known facts are the outcome of such a structure of the real
process as is here represented. All these assertions systematically
contribute to the relinquishing of the ideas of * place of the electron ”
and “ path of the electron ”. If these are not given up, contradictions
remain. This contradiction has been so strongly felt that it has even
been doubted whether what goes on in the atom could ever be
described within the scheme of space and time. From the philo-

1 Cf. especially the papers of Heisenberg, Born, J ordan, and Dirac quoted later, and
further N, Bohr, Die Naturwissenschaften, January 1926,
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sophical standpoint, I would consider a conclusive decision in this
sensc as equivalent to a complete surrender. For we cannot really
alter our manner of thinking in space and time, and what we cannot
comprehend within it we cannot understand at all. There are such
things—but I do not believe that atomic structure is one of them.
From our standpoint, however, there is no reason for such doubt,
although or rather because its appearance is extraordinarily comprehen-
sible. So might a person versed in geometrical optics, after many
attempts to explain diffraction phenomena by means of the idea of
the ray (trustworthy for his macroscopic optics), which always came to
nothing, at last think that the Laws of Geometry are not applicable to
diffraction, since he continually finds that light rays, which he imagines
as rectilinear and tndependent of each other, now suddenly show, even
in homogeneous media, the most remarkable curvatures, and obviously
mutually influence one another. I consider this analogy as very strict.
Even for the unexplained curvatures, the analogy in the atom is not
lacking—think of the “ non-mechanical force”, devised for the explana-
tion of anomalous Zeeman effects.

In what way now shall we have to proceed to the undulatory
representation of mechanics for those cases where it is necessary ?
We must start, not from the fundamental equations of mechanics, but
from a wave equation for ¢-space and consider the manifold of processes
possible according to it. The wave equation has not been explicitly
used or even put forward in this communication. The only datum for
its construction is the wave velocity, which is given by (6) or (6') as a
function of the mechanical energy parameter or frequency respectively,
and by this datum the wave equation is evidently not uniquely defined.
It is not even decided that it must be definitely of the second order.
Only the striving for simplicity leads us to try this to begin with.
We will then say that for the wave function § we have

(18) div grad ¢ - 52¢ =0,

valid for all processes which only depend on the time through a factor
e?it,  Therefore, considering (6), (6'), and (11), we get, respectively,

’ . 8772
(18" div grad ¢ + *kz‘(}“’ - V=0,
and
(18" div grad ¢ + E' V) =0.

The differential operations are to be understood with regard to the line
element (3). But even under the postulation of second order, the
above is not the only equation consistent with (6). For it is p0531b1e
to generalize by replacing div grad i by

19) Sl div (s grad ),

where f may be an arbitrary function of the ¢’s, which must depend in
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some plausible way on E, V(g), and the coefficients of the line
clement (3). (Think, e.g., of f=u.) Our postulation is again dictated
by the striving for simplicity, yet I consider in this case that a wrong
deduction is not out of the question.!

The substitution of a partial differential equation for the equations
of dynamics in atomic problems appears at first sight a very doubtful
procedure, on account of the multitude of solutions that such an
equation possesses. Already classical dynamics had led not just to
one solution but to a much too extensive manifold of solutions, viz.
to a continuous set, while all experience seems to show that only a
discrete number of these solutions is realised. The problem of the
quantum theory, according to prevailing conceptions, is to select by
means of the “quantum conditions” that discrete set of actual
paths out of the continuous set of paths possible according to classical
mechanics. It seems to be a bad beginning for a new attempt in this
direction if the number of possible solutions has been increased rather
than diminished.

It is true that the problem of classical dynamics also allows itself to
be presented in the form of a partial equation, namely, the Hamilton-
Jacobi equation. But the manifold of solutions of the problem does
not correspond to the manifold of solutions of that equation. An
arbitrary ““ complete ” solution of the equation solves the mechanical
problem completely ; any other complete solution yields the same paths
—they are only contained in another way in the manifold of paths.

Whatever the fear expressed about taking equation (18) as the
foundation of atomic dynamics comes to, I will not positively assert
that no further additional definitions will be required with it. But
these will probably no longer be of such a completely strange and
incomprehensible nature as the previous * quantum conditions ”,
but will be of the type that we are accustomed to find in physics with
a partial differential equation as initial or boundary conditions. They
will be, in no way, analogous to the quantum conditions—because in
all cases of classical dynamics, which I have investigated up till now, it
turns out that equation (18) carries within itself the quantum conditions.
It distinguishes in certain cases, and indeed in those where experience
demands it, of self, certain frequencies or energy levels as those
which alone are possible for stationary processes, without any further
assumption, other than the almost obvious demand that, as a
physical quantity, the function  must be single-valued, finite, and
continuous throughout configuration space.

Thus the fear expressed is transformed into its contrary, in any case
in what concerns the energy levels, or let us say more prudently, the
frequencies. (For the question of the  vibrational energy ” stands
by itself ; we must not forget that it is only in the one electron problem
that the interpretation as a vibration in real three-dimensional space
is immediately suggested.) The definition of the quantum levels no

! The introduction of f(g:) means that not only the * density ” but also the
““ elasticity "’ varies with the position,
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longer takes place in two separated stages: (1) Definition of all paths
dynamically possible. (2) Discarding of the greater part of those
golutions and the selection of a few by special postulations; on
the contrary, the quantum levels are at once defined as the proper
values of equation (18), which carries in itself its natural boundary
conditions.

As to how far an analytical simplification will be effected in this
way in more complicated cases, I have not yet been able to decide.
1 should, however, expect so. Most of the analytical investigators
have the feeling that in the two-stage process, described above, there
must be yielded in (1) the solution of a more complicated problem than
is really necessary for the final result : encrgy as a (usually) very simple
rational function of the quantum numbers. Already, as is known, the
applicationof the Hamilton-Jacobi method creates a greatsimplification,
as the actual calculation of the mechanical solution is avoided. Tt is
sufficient to evaluate the integrals, which represent the momenta,
merely for a closed complex path of integration instead of for a
variable upper limit, and this gives much less trouble. Still the com-
plete solution of the Hamilton-Jacobi equation must really be known,
v.e. given by quadratures, so that the mntegration of the mechanical
problem must in principle be effected for arbitrary initial values.
In seeking for the proper values of a differential equation, we must
usually, in practice, proceed thus. We seek the solution, firstly, with-
out regard to boundary or continuity conditions, and from the form
of the solution then pick out those values of the parameters, for
which the solution satisfies the given conditions. Part I. supplies
an example of this. We see by this example also, however—what
is typical of proper value problems—that the solution was only
given generally 1 an extremely inaccessible analytical form [equation
(12) loc. cit.], but that it is extraordinarily simplified for those proper
values belonging to the ““ natural boundary condition”. I am not
well enough informed to say whether direct methods have now
been worked out for the calculation of the proper values. This
is known to be so for the distribution of proper values of high order.
But this limiting case is not of interest here ; it corresponds to the
classical, macroscopic mechanics. For spectroscopy and atomic
physics, in general just the first 5 or 10 proper values will be of
interest ; even the first alone would be a great result—it defines the
tonisation potential. From the idea, definitely outlined, that every
problem of proper values allows itself to be treated as one of maxima
and minima without direct reference to the differential equation, it
appears to me very probable that direct methods will be found for
the calculation, at least approximately, of the proper values, as soon
as urgent need arises. At least it should be possible to test in
individual cases whether the proper values, Anown numerically to all
desired accuracy through spectroscopy, satisfy the problem or not.

I would not like to proceed without mentioning here that at the
present time a research is being prosecuted by Heisenberg, Born,



30 WAVE MECHANICS

Jordan, and other distinguished workers,! to remove the quantum
difficulties, which has already yielded such noteworthy success that it
cannot be doubted that it contains at least a part of the truth. In
its tendency, Heisenberg’s attempt stands very near the present one,
as we have already mentioned. In its method, it is so totally different
that I have not yet succeeded in finding the connecting link. I am
distinctly hopeful that these two advances will not fight against one
another, but on the contrary, just because of the extraordinary differ-
ence between the starting-points and between the methods, that they
will supplement one another and that the one will make progress where
the other fails. The strength of Heisenberg’s programme lies in the
fact that it promises to give the line-intensities, a question that we
have not approached as yet. The strength of the present attempt—
—if T may be permitted to pronounce thereon—lies in the guiding,
physical point of view, which creates a bridge between the macroscopic
and microscopic mechanical processes, and which makes intelligible the
outwardly different modes of treatment which they demand. Ior me,
personally, there is a special charm in the conception, mentioned at the
end of the previous part, of the emitted frequencies as “ beats ”,
which I believe will lead to an intuitive understanding of the intensity
formulae.

§ 3. Application to Examples

We will now add a few more examples to the Kepler problem
treated in Part I., but they will only be of the very simplest nature,
since we have provisionally confined ourselves to clussical mechanics,
with no magnetic field.2

1. The Planck Oscillator. The Question of Degeneracy

Firstly we will consider the one-dimensional oscillator. Let the
co-ordinate ¢ be the displacement multiplied by the square root of
the mass. The two forms of the kinetic energy then arc

(20) T=l¢ T=lp~
The potential energy will be
(21) V(q) =2m%y2?,

where v, is the proper frequency in the mechanical sense. Then
equation (18) reads in this case

(22) (E — 2y g =O.

! W. Heisenberg, Ztschr. f. Phys. 33, p. 879, 1925; M. Born and P. Jordan, ibid. 34,
p. 858, 1925 ; M. Born, W. Heisenberg, and P. Jordan, ibid. 35, p. 5567, 1926 ; P. Dirac,
Proc. Roy. Soc., London, 109, p. 642, 1925,

2 In relativity mechanics and taking a magnetic field into account the statement
of the Hamilton-Jacobi equation becomes more complicated. In the case of a single
electron, it asserts that the four-dimensional gradient of the action function, diminished
by a given vector (the four-potential), has a constant value. The translation of this
statement into the language of the wave theory presents a good many difficulties.
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For brevity write

2 4, 2

(23) o= 87E L,
Therefore
(22) P s (a-bgp=0

dq* :
Introduce as independent variable
(24) z=qv/b,
and obtain
oon dzl/l gl, 2 B
& it (e p=o

The proper values and functions of this equation are known.! The
sroper values are, with the notation used here
’ A )

(25) »\(/%=1,3,5...(2n+1). ..
The functions are the orthogonal functions of Hermate,
(26) ¢ HL),
H,(x) means the nth Hermite polynomial, which can be defined as
K ne—x'

D] . —_( — NpX® )
(.47) lI”(.E) ( l) € dr'
or explicitly by
@1) Hyfa) =(zay =" Doy

n—1)(n—-2)(n -

L ”(';f!» =D gy
The first of these polynomials are
(27") Hy(x)=1 \(x) =2
H,y(z)=4x*-2 H,(x)=8x%~12x

Ho(x) = 1624 — 4852 +12 .
Considering next the proper values, we get from (25) and (23)
(25) Bu=2"L hys m=0,1,2,3, . ..
Thus as quantum levels appear so-called ‘ half-integral >’ multiples of
the ““quantum of energy ” peculiar to the oscillator, ¢.e. the odd

multiples of -h;o. The intervals between the levels, which alone are

important for the radiation, are the same as in the former theory. It is
remarkable that our quantum levels are exactly those of Heisenberg’s
theory. In the theory of specific heat this deviation from the previous

1 Cf. Courant-Hilbert, Methods of Mathematical Physics, i. (Berlin, Springer, 1924),
v. §9, p. 261, eqn. 43, and further ii. § 10, 4, p. 76.
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theory is not without significance. It becomes important first when
the proper frequency v, varies owing to the dissipation of heat.
Formally it has to do with the old question of the ‘ zero-point energy ”,
which was raised in connection with the choice between the first
and second forms of Planck’s Theory. By the way, the additional

term %}9 also influences the law of the band-edges.
The proper functions (26) become, if we reintroduce the original
q from (24) and (23),

2t vy
DY — ) 7o
(26) pa(p) =€ & H, “777\/ 3 )

Consideration of (27”) shows that the first function is a Gaussian
Error-curve; the second vanishes at the origin and for @ positive
corresponds to a “ Maxwell distribution of velocities ” in two dimen-
sions, and 1s continued in the manner of an odd function for x negative.
The third function is even, is negative at the origin, and has two

. 1 .
symmetrical zeros at I ey etc. The curves can easily be sketched

4

roughly and it is seen that the roots of consecutive polynomials
separate one another. From (26') it is also seen that the characteristic
points of the proper functions, such as half-breadth (for n =0), zeros,
and maxima, are, as regards order of magnitude, within the range of
the classical vibration of the oscillator. For the classical amplitude
of the nth vibration is readily found to be given by

VE,_1 [h zn+1
(28) In= Z'm/o o7 N v 2

Yet there is in general, as far as I see, no definite meaning that can be
attached to the exact abscissa of the classical turning poinés in the
graph of the proper function. It may, however, be conjectured, because
the turning points have this significance for the phase space wave,
that, at them, the square of the velocity of propagation becomes
'mﬁmte and at greater distances becomes negative. In the differential
equation (22), however, this only means the vanishing of the coeflicient
of ¢y and gives rise to no singularities.

I would not like to suppress the remark here (and it is valid
quite generally, not merely for the oscillator), that nevertheless this
vanishing and becoming imaginary of the velocity of propagation
is something which is very characteristic. It is the analytical reason
for the selection of definite proper values, merely through the con-
dition that the function should remain finite. I would like to
illustrate this further. A wave equation with a real velocity of pro-
pagation means just this : there is an accelerated increase in the value
of the function at all those points where its value is lower than the
average of the values at neighbouring points, and vice versa. Such an
equation, if not immediately and lastingly as in case of the equation
for the conduction of heat, yet in the course of time, causes a levelling
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of extreme values and does not permit at any point an excessive
growth of the function. A wave equation with an imaginary velocity
of propagation means the exact opposite : values of the function above
the average of surrounding values experience an accelerated increase
(or retarded decrease), and vice versa. We see, therefore, that a function
represented by such an equation is in the greatest danger of growing
beyond all bounds, and we must order matters skilfully to preserve it
from this danger. The sharply defined proper values are just what
makes this possible. Indeed, we can see in the example treated in
Part I. that the demand for sharply defined proper values immediately
ceases as soon as we choose the quantity E to be positive, as this
makes the wave velocity real throughout all space.

After this digression, let us return to the oscillator and ask our-
selves if anything is altered when we allow it two or more degrees of
freedom (space oscillator, rigid body). If different mechanical proper
frequencies (v-values) belong to the separate co-ordinates, then nothing
is changed. i is taken as the product of functions, each of a single
co-ordinate, and the problem splits up into just as many separate
problems of the type treated above as there are co-ordinates present.
The proper functions are products of Hermite orthogonal functions,
and the proper values of the whole problem appear as sums of those
of the separate problems, taken in every possible combination. No
proper value (for the whole system) is multiple, if we presume that
there is no rational relation between the vy-values.

If, however, there is such a relation, then the same manner of
treatment is still possible, but it is certainly not unique. Multiple
proper values appear and the ““separation” can certainly be effected
in other co-ordinates, e.g. in the case of the isotropic space oscillator
in spherical polars.!

The proper values that we get, however, are certainly in each
case exactly the same, at least in so far as we are able to prove the
“ completeness ”’ of a system of proper functions, obtained in one
way. We recognise here a complete parallel to the well-known relations
which the method of the previous quantisation meets with in the
case of degeneracy. Only in one point there is a not unwelcome
formal difference. If we applied the Sommerfeld-Epstein quantum
conditions without regard to a possible degeneracy then we always
got the same energy levels, but reached different conclusions as to the
paths permitted, according to the choice of co-ordinates.

Now that is not the case here. Indeed we come to a completely
different system of proper functions, if we, for example, treat the
vibration problem corresponding to unperturbed Kepler motion in

1 We are led thus to an equation in r, which may be treated by the method shown
in the Kepler problem of Part I. Moreover, the one-dimensional oscillator leads to the
same equation if ¢* be taken as variable. I originally solved the problem directly in
that way. For the hint that it was a question of Hermite polynomials, I have to thank
Herr E. Fues. The polynomial appearing in the Kepler problem (eqn. 18 of Part I.)
is the (2n+1)th differential coefficient of the (n+I)th polynomial of Laguerre, as I
subsequently found.

(D 894) D



34 WAVE MECHANICS

parabolic co-ordinates instead of the polars used in Part I. However,
1t is not just the single proper vibration that furnishes a possible state
of vibration, but an arbitrary, finite or infinite, linear aggregate of such
vibrations. And as such the proper functions found in any second
way may always be represented; namely, they may be represented
as linear aggregates of the proper functions found in an arbitrary
way, provided the latter form a complete system.

The question of how the energy is really distributed among the
proper vibrations, which has not been taken into account here up till
now, will, of course, have to be faced some time. Relying on the former
quantum theory, we will be disposed to assume that in the degenerate
case only the energy of the set of vibrations belonging to one definite
proper value must have a certain prescribed value, which in the
non-degenerate case belongs to one single proper vibration. I would
like to leave this question still quite open—and also the question
whether the discovered “ energy levels” are really energy steps of
the wvibration process or whether they merely have the significance of
its frequency. If we accept the beat theory, then the meaning of
energy levels is no longer necessary for the explanation of sharp
emission frequencies.

2. Rotator with Fixed Axis

On account of the lack of potential energy and because of the
Euclidean line element, this is the simplest conceivable example of
vibration theory. Let "A be the moment of inertia and ¢ the angle
of rotation, then we clearly obtain as the vibration equation

1 d% 8m2E
(29) 15 5=,
which has the solution
sin 8mEA
(30) 4 = cos [ TR ]

Here the argument must be an wntegral multiple of ¢, simply because
otherwise i would neither be single-valued nor continuous throughout
the range of the co-ordinate ¢, as we know ¢ + 27 has the same signifi-
cance as ¢. This condition gives the well-known result

nZh?

8m%4

in complete agreement with the former quantisation.

No meaning, however, can be attached to the result of the application
to band spectra. For, as we shall learn in a moment, it is a peculiar
fact that our theory gives another result for the rotator with free axis.
And this is true in general. It is not allowable in the applications of
wave mechanics, to think of the freedom of movement of the system
as being more strictly limited, in order to simplify calculation, than it
actually 13, even when we know from the integrals of the mechanical
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equations that in a single movement certain definite freedoms are
not made use of. For micro-mechanics, the fundamental system of
mechanical equations is absolutely incompetent; the single paths
with which it deals have now no separate cxistence. A wave process
fills the whole of the phase space. It is well known that even the
number of the dimensions in which a wave process takes place is very
significant.

3. Rigid Rotator with Free Axis

If we introduce as co-ordinates the polar angles 8, ¢ of the radius
from the nucleus, then for the kinetic energy as a function of the
momenta we get

29 — 1 2 P¢2 >
(32) T=sq(p+ )
According to its form this is the kinetic energy of a particle constrained
to move on a spherical surface. The Laplacian operator is thus simply
that part of the spatial Laplacian operator which depends on the polar
angles, and the vibration equation (18”) takes the following form,
o 1 @ /. ¢ 1 0% 8n2dE
(33) ind 09 (50 659+ g st T =0
The postulation that i should be single-valued and continuous on the
spherical surface leads to the proper value condition
2

(34) 87224 H=n(n+1); n=0,1,2,3,...
The proper functions are known to be spherical surface harmonics.
The energy levels are, therefore,

, . n(n+1)h? .
(34) k= *('*g;.gz)— ; n=0,1,2,3, ...

This definition is different from all previous statements (except
perhaps that of Heisenberg ?). Yet, from various arguments from
experiment we were led to put “ half-integral > values for n in formula
(31). It is easily seen that (34') gives practically the same as (31) with
half-integral values of n. For

nn+1)=(n+1)2-1

The discrepancy consists only of a small additive constant ; the level
differences in (34') are the same as are got from ‘‘ half-integral quantisa-
tion ’, This is true also for the application to short-wave bands,
where the moment of inertia is not the same in the initial and final
states, on account of the ‘ electronic jump ”. For at most a small
constant additional part comes in for all lines of a band, which is
swamped in the large ‘ electronic term ” or in the * nuclear vibration
term 7. Moreover, our previous analysis does not permit us to speak
of this small part in any more definite way than as, say,

4
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The notion of the moment of inertia being fixed by ““ quantum con-
ditions ’ for electronic motions and nuclear vibrations follows naturally
from the whole line of thought developed here. We will show in the
next section how we can treat, approximately at least, the nuclear
vibrations and the rotations of the diatomic molecule simultaneously
by a synthesis of the cases ! considered in 1 and 3.

I should like to mention also that the value n=0 corresponds not
to the vanishing of the wave function ¢ but to a constant value for
it, and accordingly to a vibration with amplitude constant over the
whole sphere.

4. Non-rigid Rotator (Diatomic Molecule)

According to the observation at the end of section 2, we must state
the problem initially with all the six degrees of freedom that the
rotator really possesses. Choose Cartesian co-ordinates for the two
molecules, viz. x,, ¥y, 2, ; Za, Ya. 25, and let the masses be m; and m,,
and 7 be their distance apart. The potential energy is

(35) V =27%2u(r —1,)?,
where 2= (2~ 29)* + (Y1 — Y2)* + (21 — 2)"
Here
= MMy
(36) H= g +my

(13

may be called the “ resultant mass”. Then v, is the mechanical
proper frequency of the nuclear vibration, regarding the line joining
the nuclei as fixed, and r, is the distance apart for which the
potential energy is a minimum. These definitions are all in the sense
of the usual mechanics.

For the vibration equation (18”) we get the following :

ml<52¢' 0% 52'#) +m2<_32¢ +92¢J 52¢>

XA b,z Gyt T o

(37) 82
+ -h«z—[E = 2mWePu(r — 19)*] 4 =0.

Introduce new independent variables x, y, 2, £, 5, {, where
(38) T =0y —Ty; (Mg +M)E =MT1 +MyTy

Y=Y~ Ya; (My+ma)n=my, +myy,

2=21 =255 (Mg +My)l =12y + M2,
The substitution gives
1 /0% 0% 02 1 (0% 0% 0
37) I <6zf oy f * a?@ my+ m2<8§l€ ¢ a;@
+[a" - b'(r —10)*] ¢ =0,

where for brevity

1 Cf. A, Sommerfeld, Atombau und Spektrallinien, 4th edit., p. 833. We do not
consider here the additional non-harmonic terms in the potential energy.
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8m7E b= 167%v,2u
72 B

Now we can put for iy the product of a function of the relative co-
ordinates z, ¥, z, and a function of the co-ordinates of the centre of mass

&, G

(39) o' =

(40) 1l’=f(x, Y, z) g (g; B C)'
For g we get the defining equation
1 /0% 0% 82g
(41) E%(Z?Q an? a§2> +const. g =0.

This is of the same form as the equation for the motion, under no
forces, of a particle of mass m, +m,. The constant would in this case
have‘the meaning

2
(42) const. = 8221? i
where E, is the energy of translation of the said particle. Imagine this
value inserted in (41). The question as to the values of E, admissible as
proper values depends now on this, whether the whole infinite space is
available for the original co-ordinates and hence for those of the centre of
gravity without new potential energies coming in, or not. In the first
case every non-negative value is permissible and everynegative value not
permissible. For when E, is not negative and only then, (41) possesses
solutions which do not vanish identically and yet remain finite in all
space. If, however, the molecule is situated in a “ vessel ”’, then the
latter must supply boundary conditions for the function g, or in other
words, equation (41), on account of the introduction of further potential
energies, will alter its form very abruptly at the walls of the vessel,
and thus a discrete set of Ey-values will be selected as proper values.
It is a question of the * Quantisation of the motion of translation ”,
the main points of which I have lately discussed, showing that it
leads to Einstein’s Gas Theory.!

For the factor f of the vibration function i, depending on the relative
co-ordinates , J, z, we get the defining equation

*f 0¥ ¢ R
(13) (e e I (AT
where for brev1t;y we put
, , 87¥E-E
(39 ) a =‘(—k‘5——t).

We now introduce instead of z, ¥, z, the spherical polars 7, 8, ¢ (which is
in agreement with the previous use of 7). After multiplying by u we get

AR oy, 1 o)
rt 87( 67) * 7%|sinf 80<sm 089) *sin?o og? |
+[pa’ — pb'(r —1)?] f=0.
1 Physik. Ztschr. 217, p. 95, 1926.

(43)
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Now break up f. The factor depending on the angles is a surface
harmonic. Let the order be n. The curled bracket is —n(n+1)f.
Imagine this inserted and for simplicity let f now stand for the factor
depending on 7. Then introduce as new dependent variable

(44) x=1f,

and as new wndependent variable

(45) p=r—1

The substitution gives

(46) e S P LA
op* (ro+p)?

To this point the analysis has been exact. Now we will make an
approximation, which I well know requires a stricter justification
than I will give here. Compare (46) with equation (22') treated earlier.
They agree in form and only differ in the coefficient of the unknown

function by terms of the relative order of magnitude of rB This is seen,
0
if we develop thus :

n(n+])_n(n+l)< 2 3p% )

(47) (ot plt = 12 1 7'0+7'o2 + .. )

substitute in (46), and arrange in powers of p/r,. If we introduce for
p a new variable differing only by a small constant, viz.

, n(n +1)
48 =p- )
(48) P'=p ﬂ( b,+3n(n+1)>
0\ M ,,.04
then equation (46) takes the form
! o "2 |:P'] -
(46") ap,2+<a—bp +h =0,

where we have put

n(n+1)<1 N n(n +1) >
792 retud’ +3n(n +1)
3n(n +1)

7ot

a=pa’ -
(49)

lb =ub" +
The symbol [gjl in (46") represents terms which are small compared with
0

the retained term of the order of ';1
0
Now we know that the first proper functions of equation (22),
to which we now compare (46), only differ markedly from zero in
a small range on both sides of the origin. Only those of higher
order stretch gradually further out. For moderate orders, the domain

for equation (46'), if we neglect the term B’-] and bear in mind the
o
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order of magnitude of molecular constants, is indeed small compared
with r,. We thus conclude (without rigorous proof, I repeat), that we
can in this way obtain a useful approximation for the first proper
functions, within the region where they differ at all markedly from
zero, and also for the first proper values. From the proper value
condition (25) and omitting the abbreviations (49), (39'), and (39),
though introducing the small quantity

5 _ nr iz _n(n+ 1)k

(50) ¢ 167t 2uryt 167w 2A42

instead, we can easily derive the following energy steps,

2 ——
(E:E,+n(n+1)h <1 € >+2—l—;——1hv0\/l+3e

(51) 8md \" 1+3¢
1(n=0, L2...; 1=0,1,2..)),

where )

(52) A =pry?

is still written for the moment of inertia.

In the language of classical mechanics, € is the square of the ratio
of the frequency of rotation to the vibration frequency vy; it is
therefore really a small quantity in the application to the molecule,
and formula (51) has the usual structure, apart from this small correc-
tion and the other differences already mentioned. It is the synthesis
of (25’) and (34') to which E; is added as representing the energy of
translation. It must be emphasized that the value of the approxima-
tion is to be judged not only by the smallness of € but also by ! not
being too large. Practically, however, only small numbers have to be
considered for .

The e-corrections in (51) do not yet take account of deviations of the
nuclear vibrations from the pure harmonic type. Thus a comparison
with Kratzer’s formula (vide Sommerfeld, loc. c¢it.) and with experience
is impossible. I only desired to mention the case provisionally, as an
example showing that the intuitive idea of the equiltbrium configuration
of the nuclear system retains its meaning in undulatory mechanics
also, and showing the manner in which it does so, provided that the
wave amplitude ¢ is different from zero practically only in a small
neighbourhood of the equilibrium configuration. The direct interpre-
tation of this wave function of six variables in three-dimensional space
meets, at any rate initially, with difficulties of an abstract nature.

*The rotation-vibration-problem of the diatomic molecule will have
to be re-attacked presently, the non-harmonic terms in the energy
of binding being taken into account. The method, selected skilfully
by Kratzer for the classical mechanical treatment, is also suitable
for undulatory mechanics. If, however, we are going to push the
calculation as far as is necessary for the fineness of band structure,
then we must make use of the theory of the perturbation of proper
values and functions, that is, of the alteration experienced by a
definite proper value and the appertaining proper functions of a



40 WAVE MECHANICS

differential equation, when there is added to the coefficient of the
unknown function in the equation a small * disturbing term . This
“ perturbation theory ” is the complete counterpart of that of classical
mechanics, except that it is simpler because in undulatory mechanics
we arc always in the domain of linear relations. As a first approxi-
mation we have the statement that the perturbation of the proper
value is equal to the perturbing term averaged * over the undisturbed
motion .

The perturbation theory broadens the analytical range of the new
theory extraordinarily. As an important practical success, let me
say here that the Stark effect of the first order will be found to be
really completely in accord with Epstein’s formula, which has become
unimpeachable through the confirmation of experience.

Ziirich, Physical Institute of the University.
(Received February 23, 1926.)



The Continuous Transition from Micro-
to Macro-Mechanics

(Dre Naturwissenschaften, 28, pp. 664-666, 1926)

BuiLping on ideas of de Broglie ! and Einstein,? I have tried to show 2
that the usual differential equations of mechanics, which attempt
to define the co-ordinates of a mechanical system as functions of the
time, are no longer applicable for ““small” systems; instead there
must be introduced a certain partial differential equation, which
defines a variable i (“ wave function ”’) as a function of the co-
ordinates and the time. As in the differential equation of a vibrating
string or of any other vibrating system, i is given as a superposition
of pure time harmonic (i.e. “ sinusoidal ) vibrations, the frequencies
of which agree exactly with the spectroscopic * term frequencies ” of
the micro-mechanical system. For example, in the case of the linear
Planck oscillator 4 where the energy function is

2
(1) ’;(ZZ) + 2mtvgtng?,
when we put, instead of the displacement ¢, the dimensionless variable
g 2m [T
(2) T=q.2my 70

we get ¢ as the superposition of the following proper vibrations : %

o
‘ "bn =e” 2Hn(x)e‘lrrim.l

3) 2
‘l("n=-ﬁ§tl”0; n=0,1,2,3...)

The H,’s are the polynomials ® named after Hermite. If they are

1 L. de Broglie, Ann. de Physique (10), 3, p. 22, 1925 (Théses, Paris, 1924).

2 A. Einstein, Berlin Ber. 1925, p. 9 et seq.

3 Ann. d. Physik ; the essays here collected.

4 i.e. a particle of mass m which, moving in a straight line, is attracted towards a fixed
point in it, with a force proportional to its displacement ¢ from this point ; according
to the usual mechanics, sucg a particle executes sine vibrations of frequency v,.

5 ¢ means 4/ -~ 1. On the right-hand side the real part is to be taken, as usual.

¢ Cf. Courant-Hilbert, Methoden der mathematischen Physik, 1. chap. ii. § 10, 4,
p. 76 (Berlin, Springer, 1924).

41
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1!

multiplied by e” % and the ‘normalising factor” (2"n!)-% they are
called Hermite’s orthogonal functions. They represent therefore the
amplitudes of the proper vibrations.

The first five are represented in Fig. 1. The similarity between this
and the well-known picture of the vibrations of a string is very great.

At first sight it appears very strange to try to describe a process,
which we previously regarded as belonging to particle mechanics,
by a system of such proper vibrations. For this chosen simple
case, I would like to demonstrate here in concrefo the transition to
macroscopic mechanics, by showing that a group of proper vibrations
of high order-number n (“ quantum number ) and of relatively small
order-number differences (‘“ quantum number differences’) may
represent a ‘ particle ’, which is executing the ‘ motion ”, expected

nto
+|1
n=4 n=3 p4y n=1
n=g
ne= n=
n=0 n=2
~X € 1 Il T
-2 =1 re w5 >+
n=
n=3 B
-|7
Y

Fia. 1.—The first five proper vibrations of the Planck oscillator according to undulatory
mechanics. Outside of the region -3 <z < + 3 represented here, all five functions
approach the z-axis in monotonic fashion.

from the usual mechanics, i.e. oscillating with the frequency v, 1
choose a number A4>>1 (i.e. great compared with 1) and form the
following aggregate of proper vibrations :

— mz A " ll‘."_ vl w‘ A 2mivel "1 _z-‘ .
) ¥= n>:0 <Q> nt=¢ ,,Eo <§c > nt® Hy(®).
Thus the normalised proper vibrations (see above) are taken with
the coefficients
An
5 S
®) V2V

and this, as is easily seen,! results in the singling out of a relatively
small group in the neighbourhood of the n-value given by

(6) n =9

1 2n/n ! has, as function of n, for large values of 2, a single extremely high and relatively
very sharp maximum at n=2. By taking square roots and with z=42/2, we get the
series of numbers (5).
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The summation of the series (4) is made possible by the following
identity ! in « and s :

® gn _2? ez
(M X e THy(g)=e T,
n=0Q 7
Thus
. A dmivet 2mivgl _ a?
®) ot e

Now we take, as is provided for, the real part of the right-hand side
and after a short calculation obtain

4: Liryet)? V .
(9) =gt ~HEmACBmD o0l vl + (A sin 2avgt) <w—g cos 21w0t>].
This is the final result, in which the first factor is our first interest.
It represents a relatively tall and narrow “hump”, of the form
of a *“ Gaussian error-curve ’, which at a given moment lies in the
neighbourhood of the position

(10) x=A cos 2myt.
The breadth of the hump is of the order of magnitude unity and
therefore very small compared with 4, by hypothesis. According to
(10), the hump oscillates under exactly the same law as would operate
in the usual mechanics for a particle having (1) as its energy function.
The amplitude in terms of z 1s 4, and thus in terms of ¢ is

4 [ h
(11) Q= 2‘”\ m—v‘;
Ordinary mechanics gives for the energy of a particle of mass m, which
oscillates with this amplitude and with frequency v,,

A2
(12) 2matveim = b,

t.e. from (6) exactly nhv,, where » is the average quantum number of
the selected group. The “ correspondence ” is thus complete in this
respect also.

The second factor in (9) is in general a function whose absolute value
is small compared with unity, and which varies very rapidly with x
and also ¢t. It ploughs many deep and narrow furrows in the profile
of the first factor, and makes a wave group out of it, which is repre-
sented—schematically only—in Fig. 2. The 2-scale of Fig. 2 is naturally
much smaller than that of Fig. 1; Fig. 2 requires to be magnified five
times before being directly compared with Fig. 1. A more exact
consideration of the second factor of (9) discloses the following inter-
esting details, which cannot be seen in Fig. 2, which only represents
one stage. The number and breadth of the ‘‘ furrows ” or “ wavelets ”
within the particle vary with the time. The wavelets are most
numerous and narrowest when passing through the centre 2=0; they
become completely smoothed out at the turning points x = -+ 4, because

1 Courant-Hilbert, loc. cit. eqn. (58).
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there, by (10), cos 27yt = + 1 and thus sin 27v¢ becomes equal to zero,
so that the second factor of (9) is absolutely independent of . The
entire extension of the wave group (*“ density of the particle ’) remains,
however, always the same. The variability of the “corrugation” is
to be conceived as depending on the velocity, and, as such, is completely
intelligible from all general aspects of undulatory mechanics—but I
do not wish to discuss this further at present.

Our wave group always remains compact, and does not spread out
into larger regions as time goes on, as we were accustomed to make it
do, for example, in optics. It is admitted that this does not mean
much in one dimension, and that a hump on a string will behave quite
similarly. But it is easily seen that, by multiplying together two or
three expressions like (4), written in z, in y, and in z respectively, we
can represent also the plane and the spatial oscillator respectively, s.e.
a plane or spatial wave group which moves round a harmonic ellipse.!
Also such a wave group will remain compact, in contrast, e.g., to a

— X et 1 1 ] ) +x
=10 -5 0 t+5 +10 +20

F1a. 2.—Oscillating wave group as the representation of a particle in wave mechanics.

wave packet in classical optics, which is dissipated in the course of
time. The distinction may originate in the fact that our group is
built up out of separate discrete harmonic components, and not out of
a continuum of such.

I wish to mention, in conclusion, that a general additive constant,
C,let us say, which should be added to all the »,,’s in (3), (and corresponds
to the “ rest-energy ” of the particle) does not alter the essentials. It
only affects the square bracket in (9), adding 2#Ct thereto. Hence
the oscillations within the wave group become very much quicker with
respect to the time, while the oscillation of the group as a whole, given
by (10), and its ““ corrugation ”’, remain quite unaffected.

We can definitely foresee that, in a similar way, wave groups can
be constructed which move round highly quantised Kepler ellipses and
are the representation by wave mechanics of the hydrogen electron.
But the technical difficulties in the calculation are greater than in the
especially simple case which we have treated here.

1 We may point out, in passing, the interesting fact that the quantum levels of
the plane oscillator are infegral, but for the spatial oscillator they again become * half-

integral ”. Similarly for the rotator. This half-integralness, which is spectroscopically
so significant, is thus connected with the *“ oddness ” of the number of the dimensions

of space.



On the Relation between the Quantum
Mechanics of Heisenberg, Born, and
Jordan, and that of Schridinger

(Annalen der Physik (4), vol. 79, 1926)

§ 1. Introduction and Abstract

CoONSIDERING the extraordinary differences between the starting-points
and the concepts of Heisenberg’s quantum mechanics! and of the
theory which has been designated * undulatory” or * physical ”
mechanics,? and has lately been described here, it is very strange that
these two new theories agree with one another with regard to the known
facts, where they differ from the old quantum theory. I refer, in
particular, to the peculiar ‘ half-integralness” which arises in
connection with the oscillator and the rotator. That is really very
remarkable, because starting-points, presentations, methods, and in
fact the whole mathematical apparatus, seem fundamentally different.
Above all, however, the departure from classical mechanics in the two
theories seems to occur in diametrically opposed directions. In
Heisenberg’s work the classical continuous variables are replaced by
systems of discrete numerical quantities (matrices), which depend on
a pair of integral indices, and are defined by algebraic equations. The
authors themselves describe the theory as a “true theory of a dis-
continuum .3 On the other hand, wave mechanics shows just the
reverse tendency ; it is a step from classical point-mechanics towards
a continuum-theory. In place of a process described in terms of a
finite number of dependent variables occurring in a finite number of
total differential equations, we have a continuous field-luke process in

1 W. Heisenberg, Ztschr. f. Phys. 33, p. 879, 1925 ; M. Born and P. Jordan, idem 34,
. 858, 1925, and 35, p. 567, 1926 (the latter in collaboration with Heisenberg). I may

ge allowed, for brevity’s sake, to replace the three names simply by Heisenberg, and to
quote the last two essays as *“ Quantum Mechanics I. and 11.”” Interesting contributions
to the theory have also been made by P. Dirac, Proc. Roy. Soc., London, 109, p. 642,
1925, and idem 110, p. 561, 1926.

2 E. Schrédinger. Parts I. and II. in this collection. These parts will be continued
?ui:,e independently of the present paper, which is only intended to serve as a connecting
ink.

3 “ Quantum Mechanics I.” p. 879.
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configuration space, which is governed by a single partial differential
equation, derived from a principle of action. This principle and this
differential equation replace the equations of motion and the quantum
conditions of the older ‘ classical quantum theory .1

In what follows the very intimate tnner connection between
Heisenberg’s quantum mechanics and my wave mechanics will be
disclosed. From the formal mathematical standpoint, one might well
speak of the identity of the two theories. The train of thought in the
proof is as follows.

Heisenberg’s theory connects the solution of a problem in quantum
mechanics with the solution of a system of an infinite number of
algebraic equations, in which the unknowns—infinite matrices—are
allied to the classical position- and momentum-co-ordinates of the
mechanical system, and functions of these, and obey peculiar calcu-
lating rules. (The relation is this: to one position-, one momentum-
co-ordinate, or to one function of these corresponds always one infinite
matrix.)

I will first show (§§ 2 and 3) how to each function of the position-
and momentum-co-ordinates there may be related a matrix in such
a manner, that these matrices, in every case, satisfy the formal cal-
culating rules of Born and Heisenberg (among which I also reckon
the so-called “ quantum condition” or ‘ interchange rule”; see
below). This relation of matrices to functions is general ; it takes no
account of the special mechanical system considered, but is the same
for all mechanical systems. (In other words : the particular Hamilton
function does not enter into the connecting law.) However, the relation
is still indefinite to a great extent. It arises, namely, from the
auxiliary introduction of an arbitrary complete orthogonal system of
functions having for domain entire configuration space (N.B.—not
“ pg-space ”’, but ““g¢-space’’). The provisional indefiniteness of the
relation lies in the fact that we can assign the auziliary réle to an
arbitrary orthogonal system.

After matrices are thus constructed in a very general way, so as to
satisfy the general rules, I will show the following in § 4. The special
system of algebraic equations, which, in a special case, connects the
matrices of the position and impulse co-ordinates with the matriz of
the Hamilton function, and which the authors call “equations of
motion ”, will be completely solved by assigning the auxiliary réle to a
definite orthogonal system, namely, to the system of proper functions
of that partial differential equation which forms the basis of my wave
mechanics. The solution of the natural boundary-value problem of this
differential equation is completely equivalent to the solution of Heisen-
berg’s algebraic problem. All Heisenberg’s matrix elements, which

1 My theory was inspired by L. de Broglie, Ann. de Physique (10) 3, p. 22, 1926
(Theses, Paris, 1924), and by brief, yet infinitely far-seeing remarks of A. Einstein,
Berl. Ber., 1925, p. 9 et seq. 1 did not at all suspect any relation to Heisenberg’s theory
at the beginning. I naturally knew about his theory, but was discouraged, if not

repelled, by what appeared to me as very difficult methods of transcendental algebra,
and by the want of perspicuity (Anschaulichkeit).
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may interest us from the surmise that they define ‘‘ transition prob-
abilities ” or ‘“line intensities”, can be actually evaluated by
differentiation and quadrature, as soon as the boundary-value problem
is solved. Moreover, in wave mechanics, these matrix elements, or
quantities that arc closely related to them, have the perfectly clear
significance of amplitudes of the partial oscillations of the atom’s
electric moment. The intensity and polarisation of the emitted light
is thus intelligible on the basis of the Maxwell- Lorentz theory. A
short preliminary sketch of this relationship is given in § 5.

§ 2. The Co-ordination of an Operator and of a Matrix with a Well-
arranged Function-symbol and the Establishment of the Product Rule

The starting-point in the construction of matrices is given by the
simple observation that Heisenberg’s peculiar calculating laws for
functions of the double set of n quantities, q;, @2, . . ., @un; Py Do

. ., Pn (position- and canonically conjugate momentum-co-ordinates)
agree exactly with the rules, which ordinary analysis makes linear
differential operators obey in the domain of the single set of n variables,

91 Gos + + - @n. So the co-ordination has to occur in such a manner
that each p; in the function is to be replaced by the operator Z%'
: i

. . ) .
Actually the operator P( is exchangeable with E‘;”’ where m 1s
qi Ym
arbitrary, but with ¢, only, if m+Il. The operator, obtained by
interchange and subtraction when m =1, viz.

0 0

(1) aqqu qlaql’
when applied to any arbitrary function of the ¢’s, reproduces the
function, t.e. this operator gives identity. This simple fact will be
reflected in the domain of matrices as Heisenberg’s interchange rule.

After this preliminary survey, we turn to systematic construction.
Since, as noticed above, the interchangeability does not always hold
good, then a definite operator does not correspond uniquely to a
definite ““ function in the usual sense ” of the ¢’s and p’s, but to a
 function-symbol written in a definite way . Moreover, since we
can perform only the operations of addition and multiplication with

the operators dgv the function of the ¢’s and p’s must be written as a
k
regular power series in p at least, before we substitute 8?1_ for p.. It
!

is sufficient to carry out the process for a single term of such a power
series, and thus for a function of the following construction :

@) Flge pe)=f@r - - - qn)prpepg(qy - - - qulpr gy - - - Qu)prps. .
We wish to express this as a “ well-arranged ! function-symbol”’ and
relate it to the following operator,

1 Or “ well-ordered.”
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wherein, somewhat more generally than in the preliminary survey,

‘)

pr 18 not replaced by 8_8_ simply, but by K 2, and K stands for a

universal constant. As an abbreviation for the operator arising out of
the well-arranged function F, I have introduced the symbol [F, - ]
in passing (¢.e. only for the purpose of the present proof). The function
(in the usual sense) of ¢, . . . ¢n. which is obtained by using the
operator on another function (in the usual sense), u(q; . . . g,), will
be denoted by [F, u]. 1f G is another well-arranged function, then
[GF, u] will denote the function u after the operator of F has
Sirst been used on it, and then the operator of G'; or, what is defined
to be the same, when the operator of G'F has been used. Of course
this is not generally the same as [FG, u].

Now we connect a matriz with a well-arranged function, like F,
by means of its operator (3) and of an arbitrary complete orthogonal
system having for its domain the whole of ¢-space. It is done
as follows. For brevity we will simply write « for the group of
variables q;, ¢;, . . . ¢n, as is usual in the theory of Integral Equations,

and write [dx for an integral extending over the whole of g-space.
The functions
@ w@VeE), w@Ve@), u@Ve@ . . . adinf,

are now to form a complete orthogonal system, normalised to 1.
Let, therefore, in every case

’-/p(x)u;(x)uk(x)dx =0fori+k

=1forv="L.
Further, it is postulated that these functions vanish at the natural
boundary of g-space (in general, infinity) in a way sufficient to cause
the vanishing of certain boundary integrals which come in later on as

secondary products after certain integrations by parts.
By the operator (3) we now relate the following matriz,

{6) : F’f’=/p (2)ur(2)[F, wizx)]dz,

to the function F represented by (2). (The way of writing the indices
on the left-hand side must not suggest the idea of “ contravariance ”;
from this point of view, here discarded, one index was formerly written
above, and the other below; we write the matrix indices above,
because later we will also have to write matrix elements, corresponding
to the ¢’s and p’s, where the lower place is already occupied.) In
words : a matrix element is computed by multiplying the function of

®)
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the orthogonal system denoted by the row-index (whereby we under-

stand always w;, not w;Vp), by the ‘““density function” p, and by
the result arising from using our operator on the orthogonal function
corresponding to the column-index, and then by integrating the whole
over the domain.?

It is not very difficult to show that additive and multiplicative
combination of well-arranged functions or of the appertaining operators
works out as matrix addition and matrix multiplication of the allied
matrices. For addition the proof is trivial. For multiplication the

proof runs as follows. Let G' be any other well-arranged function,
like F, and

(M) G~ [p(@u(@)G, un(@)lda,

the matrix corresponding. We wish to form the product matrix
(FG)km = X FHGim,
1

Before writing it, let us transform the expression (6) for F¥ as follows.
By a series of integrations by parts, the operator [F, - ]is “revolved”
from the function %) (x) to the function p(z)ui(x). By the expression
“revolve " (instead of, say, “ push”) I wish to convey that the
sequence of the operations reverses itself exactly thereby. The
boundary integrals, which come in as “ by-products ”, are to disappear
(see above). The “revolved” operator, including the change of
sign that accompanies an odd number of differentiations, will be
denoted by [#, - ]. For example, from (3) comes
: 02 0
’ « 1=( -1\ "2 o
3) B, 1=(=1) ... Kby g0y
g O
9@ - - B S ),

where 7=number of differentiations. By applying this symbol, we
have

) P~ [u(@)F, p(o)u(o)lda.
If we now calculate the product matrix, we get
(8) % FH@im
=3{ [w(@IE, playur(@d . [p(@ui)E, un()liz)

- I, p(@)us@)G, ().
The last equation is simply the so-called “ relation of completeness ”

1 More briefly : F*! is the kth ‘‘ development coefficient * of the operator used on
the function u;.
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of our orthogonal system,! applied to the “ development coefficients *
of the functions
S F plauda)]

Now in (8), let us revolve, by further integrations by parts, the
operator [F, - ]from the function p(z)uz(x) back again to the function
[G, um(x)], so that the operator regains its original form. We clearly
get

9) (BG)m = TG = [p(x)uy(z)[ FG:, tn(2) 2.
1
On the left is the (km)th element of the product matrix, and on the

right, by the law of connection (6), stands the (km)th element of the
matrix, corresponding to the well-arranged product #G. Q.E.D.

[G, um(z)] and

§ 3. Heisenberg’s Quantum Condition and the Rules for
Partial Differentiation

Since operation (1) gave identity, then corresponding to the well-
arranged function

(10) gL =qip
we have the operator, multiplication by K, in accordance with our

law of connection, in which we incorporated a universal constant K.
Hence to function (10) corresponds the matriz

(11) (pugi — pr)* = K/p(:c)u,(x)uk(x)dx =0forv+£k
=K forv=k.
That is Heisenberg’s “ quantum relation ” if we put
h

and this may be assumed to hold from now on. It is understood that
we could have also found relation (11) by taking the two matrices
allied to ¢; and pj, viz.

(13) o= [ap(@uiyula)iz,

it =K [playua) i,

multiplying them together in different sequence and subtracting the
two results.
Let us now turn to the ‘““rules for partial differentiation ™.
A well-arranged function, like (2), is said to be differentiated partially
with respect to ¢;, when it is differentiated with respect to ¢; without
1 See, e.g., Courant-Hilbert, Methods of Mathematical Physics, 1., p. 36. It is
important to remember that the * relation of completeness ’ for the ‘ development

coefficients ”’ is valid in every case, even when the developments themselves do not
converge. If these do converge, then the equivalence (8) is directly evident.
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altering the succession of the factors at each place where ¢, appears in
it, and all these results are added.! Then it is easy to show that the
following equation between the opera,tors is valid :

(14) lﬁq;’ J K[p’F Fp - )

The line of thought is this. Instead of really differentiating with
respect to q;, it is very convenient simply to prefix p; to the function ;

as it is, p; must finally be replaced by K 8%" Obviously I have to divide
1
by K. Furthermore, when we apply the entire operator to any

function u, the operator »- will act not only on that part of F which

aqz
contains ¢; (as it ought), but also wrongly on the function w, affected
by the entire operator. This mistake is exactly corrected by subtracting
again the operation [Fp,, - ]!

Consider now partial differentiation with respect to a p. Its
meaning for a well-arranged function, like (2), is a little simpler than

in the case of oq7 because the p’s only appear as power products.

We imagine every power of il to be resolved into single factors, e.g.
think of ppp instead of pB, and we can then say: in partlal
differentiation with respect to p;, every separate p, that appears in
F is to be dropped once, all the other p,’s remaining; all the results
obtained are to be added. What will be the effect on the operator (3) ¢

“ Every separate K?% is to be dropped once, and all the results so
1

obtained are to be added.”
I maintain that on this reasoning the operational equation
oF 1
(15) a];l’ : j|=K[FQl—QIF, -]

is valid. Actually, I picture the operator [Fg;, « Jas formed and now
attempt to *‘ push ¢; through F from right to left ”, that means,
attempt to arrive at the operator [, F, -]through successive exchanges.
This pushing through meets an obstacle on]y as often as I come

against a 58—(11 With the latter I may not interchange ¢; simply, but

have to replace
(16) A by 1+ @
Oq y ql«?ql

in the interior of the operator. The secondary products of the inter-
change, which are yielded by this * uniformising ”’, form just the

! We are naturally following Heisenberg faithfully in all these definitions. From
a strictly logical standpomt the followmg Eroof is evidently superfluous, and we could
have written down rules (14) and (15) right away, as they are proved in Heisenberg,
and only depend upon the sum and product rules and the exchange rule (11) whic
we have proved.
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desired “ partial differential coefficients ”’, as is easily seen. After the
pushing-through process is finished, the operator [¢F, - ] still remains
left over. It would be superfluous and therefore is explicitly sub-
tracted in (15). Hence (15) is proved. The equations (14) and (15),
which have been proved for operators, naturally hold good unchanged
for the matrices belonging to the right-hand and left-hand sides,
because by (6) one matrix, and one only, belongs to one linear operator
(after the system wu;(z) has been chosen once for all).?

§ 4. The Solution of Heisenberg’s Equations of Motion

We have now shown that matrices, constructed according to
definitions (3) and (6) from well-arranged functions by the agency of
an arbitrary, complete orthogonal system (4), satisfy all Heisenberg’s
calculating rules, including the interchange rule (11). Now let us
consider a special mechanical problem, characterised by a definite
Hamilton function

(17) H(qr, pr)-

The authors of quantum mechanics take this function over from
ordinary mechanics, which naturally does not give it in a ‘ well-
arranged ”’ form; for in ordinary analysis no stress is laid on the
sequence of the factors. They therefore ‘ normalise” or “ sym-
metricalise ”’ the function in a definite manner for their purposes.
For example, the usual mechanical function ¢;p;? is replaced by

$(Pqr + i)

1 In passing it may be noted that the converse of this theorem is also true, at least
in the sense that certainly not more than one linear differential operator can belong to
a given matrix, according to our connecting law (6), when the orthogonal system and
the density function are prescribed. For in (6), let the F*’s be given, let [ F, « ] be the
linear operator we are seeking and which we presume to exist, and let ¢(z) be a function
of ¢y, G55y - + +» Gn, Which is sectionally continuous and differentiablc as often as
necessary, but otherwise arbitrary. Then the relation of completeness applied to the
functions ¢(x) and [F, ux(x))] yields the following :

Jo@ @, ur@ Mz ={ [ p(z)p(zui2)dz . [o(@)u@)[F, u(z)ldz}.

The right-hand side can be regarded as definitcly known, for in it occur only develop-
ment coefficients of ¢(x) and the prescribed matrix elements F'*. By  revolving "
(see above), we can change the left-hand side into the kth development coefficient of
the function
£, pe)pta)]
p(z)

Thus all the development coefficients of this function are uniquely fixed, and thus so is
the function itself (Courant-Hilbert, p. 37). Since, however, p(x) was fixed before-
hand and ¢(zx) is a quite arbitrary function, we can say : the result of the action of
the revolved operator on an arbitrary function, provided, of course, it can be submitted
to the operator at all, is fixed uniguely by the matrix F¥i. This can only mean that
the revolved operator is uniquely fixed, for the notion of * operator * is logically identical
with the whole of the results of its action. By rovolving the revolved operator, we
obtain uniquely the operator we have sought, itself.

It is to be noted that the developability of the functions which appear is not
necessarily postulated—we have not proved that a linear operator, corresponding to
an arbitrary matrix, always exists.
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or by PrqPr
or by 3(PRge + PrgiPr + Q)
which are all the same, according to (11). This function is then  well-
arranged ”’, 7.e. the sequence of the factors is inviolable. I will not
enter into the general rule for symmetricalising here ;! the idea, if I
understand it aright, is that II* is to be a diagonal matriz, and in
other respects the normalised function, regarded as one of ordinary
analysis, is to be identical with the one originally given.? We will
satisfy these demands in a direct manner.

Then the authors postulate that the matrices q;'%, p,/* shall satisty
an infinite system of equations, as ““ equations of motion ”, and to
begin with they write this system as follows :

L R
<(f[[;1>lk~__< ‘%Z)Ik’i, k=1,2,3, ... ad. inf,

The upper pair of indices signifies, as before in FFk, the respective
element of the matrix belonging to the well-arranged function in
question, The meaning of the partial differential coefficient on the

right-hand side has just been explained, but not that of the jt appearing
on the left. By it the authors signify the following. It is to give a
series of numbers

(19) vy, Vo, Vg, Vg, - . . ad inf,,

such that the above equations are fulfilled, when to the c(llt is ascribed

the meaning : multiplication of the (sk)th matrix element by 274/ =1
(v. —vi). Thus, in particular,

dq\* — .
[<dqtl> =2mV = 1(vi —v)qi*;

(20) 1 idosi
Ipi\* - .
l((dlb =27V -~ 1(vi i) pii.

The series of numbers (19) is not defined in any way beforehand, but
together with the matrix elements ¢,*, p/*, they form the numerical
unknowns of the system of equations (18). The latter assumes the
form

1
(vi—vige =, (Hq - H)

(18"

|
(vi—vi)pit = (Hpi - p H)

1 “Quantum Mechanics I.” p. 873 et seq.

% The stricter postulation—¢shall yield the same quantum-mechanical equations
of motion ”’—I consider too narrow. It arises, in my opinion, from the fact that the
authors confine themselves to power products with regard also to the q;’s—which is
unnecessary.
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when we utilise the explanation of the symbols (20), and the calculating
rules (14) and (15), and take account of (12).

We must thus satisfy this system of equations, and we have no
means at our disposal, other than the suitable choice of the orthogonal
system (4), which intervenes in the formation of the matrices. I now
assert the following :

1. The equations (18’) will in general be satisfied if we choose as
the orthogonal system the proper functions of the natural boundary
value problem of the following partial differential equation,

(21) ~-[H, Y1+ EYp=0.

¢ is the unknown function of ¢, qa, . . ., gu; I is the proper value
parameter. Of course, as density function, p(x) appears that function
of q,, . . ., qn, by which equation (21) must be multiplied in order to
make it self-adjoint. The quantities v; are found to be equal to the
proper values E; divided by A. H* becomes a diagonal matrix, with
H¥ = Ey,

2. If the symmetricalising of the function H has been effected tn a
suttable way—the process of symmetricalising, in my opinion, has not
hitherto been defined uniquely—then (21) s identical with the wave
equation which is the basis of my wave mechanics.!

Assertion 1 is almost directly evident, if we provisionally lay aside
the questions whether equation (21) gives rise at all to an intelligible
boundary value problem with the domain of entire g-space, and
whether it can always be made self-adjoint through multiplication by
a suitable function, etc. These questions are largely settled under
heading 2. For now we have, according to (21) and the definitions of
proper values and functions,

(22) [H, u]= B,
and thus from (6) we get

Hk = f p(@)ur(z)[H, w(z)|de = E; / playuy(z)u(x)dz
(23) =0forl+k
= El forl= k,
and, for example,
{( Hg))* = SHimgmk — E gk
m

24 - o )
( ) . {(qu)zk = qu'lmHmk - Ekql'tk’

so that the right-hand side of the first equation of (18’) takes the value
E, - E; .
(25) i,
Similarly for the second equation. Thus everything asserted under 1
is proved.
1 Equation (18”), Part II.
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Let us turn now to assertion 2, which is, that there is agreement
between the negatively taken operator of the Hamilton function (suit-
ably symmetricalised) and the wave operator of wave mechanics. I
will first illustrate by a simple example why the process of sym-
metricalisation aeems to me to be, in the first instance, not unique.
Let, for one degree of freedom, the ordinary Hamilton function be

(26) H=4(p*+¢°).

Then it is admitted that we can take this function, just as it stands,
unchanged, over to ‘ quantum mechanics ” as a *‘ well-arranged ”
function. But we can also, and seemingly indeed with as much right
20 begin with, apply the well- -arranged function

27 H= §<f(q)pf @p+q )

where f(g) is a function arbitrary within wide limits. f(g) would appear
in this case as a * density function ”” p(z). (26) is quite evidently just
a special case of (27), and the question arises, whether (and how) it
is at all possible to distinguish the special case we are concerned
with, 7.e. for more complicated H-functions. Confining ourselves to
power products only of the ¢;’s (where we could then simply prohibit
the ““ production of denominators ’) would be most inconvenient just
in the most important applications. Besides, I believe that does not
lead to correct symmetricalisation.

For the convenience of the reader, I will now give again a short
derivation of the wave equation in a form suited to the present purpose,
confining myself to the case of classical mechanics (without relativity
and magnetic fields). Let, therefore,

(28) H =T(qx, pi) + V(ga),

T being a quadratic form in the py’s. Then the wave equation can be
deduced ! from the following variation problem,

PJI—S/ ql, “/} +¢2Vq; } ~idr =0,

(29) 1 with the subsidiary condltlon
- [y, b1,

As above, / dz stands for / ce / dq, . . . dg.; A,Yis the reciprocal

of the square root of the discriminant of the quadratic form T. This
Jactor must not be omitted, because otherwise the whole process would
not be invariant for point transformatlons of the ¢’s! By all means
another explicit function of the ¢’s might appear as a factor, t.e. a
function which would be invariant for a point transformation of the g’s.
(For A, as is known, this is not the case. Otherwise we could omit A, 4,
if this extra function was given the value A,t)

If we indicate the dervative of T with' respect to that argument,

1 Equations (23) and (24) of Part I.

e ) a2
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which originally was pi, by the suffix pg, we obtain, as the result of the

variation,
{O =1(8J, - E&J,)
_ h? —8~ N -4 55/!_
(30) 3 —/ { " 8nt % qu[_A” T,,k<q;., aq)]

‘\ +(Vign) - E)A,~ h/;}&/:dx ;
the Eulerian variation equation thus runs :

h? o | e\ |

A “A, -t oA )= =
6D gt Sy 1878 (g o )| - Ve + B =0.
It is not difficult to see that this equation has the form of (21) if we
remember our law connecting the operators, and consider

(32) T(qr, pr) = TI'LZ'PI:T,;"(QI:, Pr)

the Eulerian equation for homogeneous functions, applied to the
quadratic form T. In actual fact, if we detach the operator from
the left side of (31), with the proper value term Ey removed, and
replace in it 27’% oge by s, then according to (32) we obtain the
negatively taken Hamilton function (28). Thus the process of variation
has given quite automatically a uniquely defined ““ symmetricalisation *
of the operator, which makes it self-adjoint (except possibly for a
common factor) and makes it invariant for point transformations, and
which I would like to maintain, as long as there are no definite reasons
for the appearance under the integrals (29) of the additional factor,
already ! mentioned as possible, and for a definite form of the latter.

Hence the solution of the whole system of matrix equations of
Heisenberg, Born, and Jordan is reduced to the natural boundary
value problem of a linear partial differential equation. If we have
solved the boundary value problem, then by the use of (6) we can
calculate by differentiations and quadratures every matrix element we
are interested in.

As an illustration of what is to be understood by the natural
boundary value problem, i.e. by the natural boundary conditions at
the natural boundary of configuration space, we may refer to the
worked examples.? It invariably turns out that the natural infinitely
distant boundary forms a singularity of the differential equation and
only allows of the one boundary condition—‘‘ remaining finite ’. This
seems to be a general characteristic of those micro-mechanical prob-
lems with which the theory in the first place is meant to deal. If the
domain of the position co-ordinates is artificially limited (example :
a molecule in a “ vessel”’), then an essential allowance must be made
for this limitation by the introduction of suitable potential energies in

1 Cf. also Ann. d. Phys. 79, p. 362 and p. 510 (i.e. Parts I. and II.).
2 In Parts I. and II. of this collection.
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the well-known manner. Also the vanishing of the proper functions at
the boundary generally occurs to an adequate degree, even if relations
among certatn of the integrals (6) are present, which necessitate a
special investigation, and into which I will not enter at present. (It
has to do with those matrix elements in the Kepler problem which,
according to Heisenberg, correspond to the transition from one
hyperbolic orbit to another.)

I have confined myself here to the case of classical mechanics,
without magnetic fields, because the relativistic magnetic generalisa-
tion does not seem to me to be sufficiently clear yet. But we can
scarcely doubt that the complete parallel between the two new quantum
theories will still stand when this generalisation is obtained.

We conclude with a general observation on the whole formal
apparatus of §§ 2, 3, and 4. The basic orthogonal system was regarded
as an absolutely discrete system of functions. Now, in the most
important applications this is not the case. Not only in the hydrogen
atom but also in heavier atoms the wave equation (31) must possess
a continuous proper value spectrum as well as a line spectrum.
The former manifests itself, for example, in the continuous optical
spectra which adjoin the limit of the series. It appeared better,
provisionally, not to burden the formulae and the line of thought
with this generalisation, though it is indeed indispensable. The chief
aim of this paper is to work out, in the clearest manner possible, the
formal connection between the two theories, and this is certainly not
changed, in any essential point, by the appearance of a continuous
spectrum. An important precaution that we have always observed
is not to postulate, without further investigation, the convergence of
the development in a series of proper functions. This precaution is
especially demanded by the accumulation of the proper values at a
Jfinite pownt (viz. the limit of the series). This accumulation is most
intimately connected with the appearance of the continuous spectrum.

§ 5. Comparison of the Two Theories. Prospect of a Classical Under-
standing of the Intensity and Polarisation of the Emitted Radiation

If the two theories—I might reasonably have used the singular—
should ! be tenable in the form just given, ¢.e. for more complicated
systems as well, then every discussion of the superiority of the one
over the other has only an illusory object, in a certain sense. For
they are completely equivalent from the mathematical point of view,
and it can only be a question of the subordinate point of convenience
of calculation.

1 There is a special reason for leaving this question open. The two theories initially
take the energy function over from ordinary mechanics. Now in the cases treated the
potential energy arises from the interaction of particles, of which perhaps one, at least,
may be regarded in wave mechanics also as forming a point, on account of its great mass
(¢f- A. Einstein, Berl. Ber., 1925, p. 10). We must take into account the possibility
that it is no longer permissible to take over from ordinary mechanics the statement
for the potential energy, if both *‘ point charges ” are really extended states of vibration,
which penetrate each other.
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To-day there are not a few physicists who, like Kirchhoff and
Mach, regard the task of physical theory as being merely a mathe-
matical description (as economical as possible) of the empirical con-
nections between observable quantities, 7.e. a description which repro-
duces the connection, as far as possible, without the intervention of
unobservable elements. On this view, mathematical equivalence has
almost the same meaning as physical equivalence. In the present
case there might perhaps appear to be a certain superiority in the
matrix representation because, through its stifling of intuition, it
does not tempt us to form space-time pictures of atomic processes,
which must perhaps remain uncontrollable. In this connection, how-
ever, the following supplement to the proof of equivalence given
above is interesting. The equivalence actually exists, and it also
exists conversely. Not only can the matrices be constructed from the
proper functions as shown above, but also, conversely, the functions
can be constructed from the numerically given matrices. Thus the
functions do not form, as it were, an arbitrary and special “ fleshly
clothing ” for the bare matrix skeleton, provided to pander to the
need for intuitiveness. This really would establish the superiority of
the matrices, from the epistemological point of view. We suppose
that in the equations

(33) gt = / w(@)uy(x)d

the left-hand sides are given numerically and the functions wu(x)
are to be found. (N.B.—The * density function” is omitted for
simplicity ; the u,(z)’s themselves are to be orthogonal functions for the
present.) We may then calculate by matrix multiplication (without,
by the way, any “revolving ”, ¢.e. integration by parts) the following
integrals,

(34) [ P@yuszyuais,

where P(x) signifies any power product of the ¢’s. The totality of
these integrals, when 2 and %k are fixed, forms what is called the
totality of the ‘“moments” of the function wu,(x)ux(x). And it is
known that, under very general assumptions, a function is determined
uniquely by the totality of its moments. So all the products
ui(x)ur(x) are uniquely fixed, and thus also the squares wu,(x)?
and therefore also ui(x) itself. The only arbitrariness lies in the
supplementary detachment of the density function p(x), e.g. 72sin 6
in polar co-ordinates. No false step is to be feared there, certainly
not so far as epistemology is concerned.

Moreover, the validity of the thesis that mathematical and physical
equivalence mean the same thing, must itself be qualified. Let
us think, for example, of the two expressions for the electrostatic

energy of a system of charged conductors, the space integral }|E%dr
and the sum }2Ze;V; taken over the conductors. The two expressions
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are completely equivalent in electrostatics ; the one may be derived
from the other by integration by parts. Nevertheless we intentionally
prefer the first and say that it correctly localises the energy in space.
In the domain of electrostatics this preference has admittedly mo
justification. On the contrary, it is due simply to the fact that the
first expression remains useful in electrodynamics also, while the
second does not.

We cannot yet say with certainty to which of the two new quantum
theories preference should be given, from this point of view. As the
natural advocate of one of them, I will not be blamed if I frankly—
and perhaps not wholly impartially—bring forward the arguments in
its favour.

Leaving aside the special optical questions, the problems which
the course of development of atomic dynamics brings up for considera-
tion are presented to us by experimental physics in an eminently
intuitive form ; as, for example, how two colliding atoms or molecules
rebound from one another, or how an electron or a-particle is diverted,
when it is shot through an atom with a given velocity and with the
initial path at a given perpendicular distance from the nucleus. In
order to treat such problems more particularly, it is necessary to survey
clearly the transition between macroscopic, perceptual mechanics and
the micro-mechanics of the atom. 1 have lately! explained how I
picture this transition. Micro-mechanics appears as a refinement of
macro-niechanics, which is necessitated by the geometrical and
mechanical smallness of the objects, and the transition is of the same
nature as that from geometrical to physical optics. The latter is
demanded as soon as the wave length is no longer very great com-
pared with the dimensions of the objects investigated or with the
dimensions of the space inside which we wish to obtain more accurate
information about the light distribution. To me it seems extra-
ordinarily difficult to tackle problems of the above kind, as long
as we feel obliged on epistemological grounds to repress intuition
in atomic dynamics, and to operate only with such abstract ideas as
transition probabilities, energy levels, etc.

An especially important question—perhaps the cardinal question of
all atomic dynamics—is, as we know, that of the coupling between the
dynamic process in the atom and the electromagnetic field, or whatever
has to appear in the place of the latter. Not only is there connected
with this the whole complex of questions of dispersion, of resonance-
and secondary-radiation, and of the natural breadth of lines, but, in
addition, the specification of certain quantities in atomic dynamics,
such as emission frequencies, line intensities, etc., has only a mere
dogmatic meaning until this coupling is described mathematically in
some form or other. Here, now, the matrix representation of atomic
dynamics has led to the conjecture that in fact the electromagnetic
field also must be represented otherwise, namely, by matrices, so that
the coupling may be mathematically formulated. Wave mechanics

1 Part II.
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shows we are not compelled to do this in any case, for the mechanical
field scalar (which I denote by i) is perfectly capable of entering
into the unchanged Maxwell-Lorentz equations between the electro-
magnetic field vectors, as the “ source ” of the latter; just as, con-
versely, the electrodynamic potentials enter into the coefficients of
the wave equation, which defines the field scalar.! In any case, it is
worth while attempting the representation of the coupling in such a
way that we bring into the unchanged Maxwell-Lorentz equations
as four-current a four-dimensional vector, which has been suitably
derived from the mechanical field scalar of the electronic motion
(perhaps through the medium of the field vectors themselves, or the
potentials). There even exists a hope that we can represent the wave
equation for ¢ equally well as a consequence of the Maxwell-Lorentz
equations, namely, as an equation of continuity for electricity. The
difficulty in regard to the problem of several electrons, which mainly
lies in the fact that ¢ is a function in configuration space, not in real
space, must be mentioned. Nevertheless I would like to discuss the
one-electron problem a little further, showing that it may be possible
to give an extraordinarily clear interpretation of intensity and
polarisation of radiation in this manner.

Let us consider the picture, on the wave theory, of the hydrogen
atom, when it is in such a state that the field scalar 4 is given by a
series of discrete proper functions, thus :

2 —_—1 Ext
(35) =Scpu(x)e k
k

(x stands here for three variables, e.g. 7, 8, ¢ ; the c;’s are taken as real
and 1t is correct to take the real part). We now make the assumption
that the space density of electricity is given by the real part of

(36) 4.

The bar is to denote the conjugate complex function. We then
calculate for the space density,

e — .2
(37) space density = 27-r(k2m)ckcmE"—h-Ef”uk(x)um(x) sin —Zt(Em - Ey),

where the sum is to be taken once only over every combination (k, m).
Only term differences enter (37) as frequencies. The former are so
low that the length of the corresponding ether wave is large compared

! Similar ideas are expressed by K. Lanczos in an interesting note that has just
aﬁ)peared (Ztschr. f. Phys. 35, p. 812, 1926). This note is also valuable as showing
that Heisenberg’s atomic dynamics is capable of a continuous interpretation as well.
However, Lanczos’ work has fewer points of contact with the present work than at
first it was thought to have. The determination of his formal system, which was
provisionally left quite indefinite, is not to be sought by following the idea that in some
way the symmetrical nucleus K (3, ¢) of Lanczos can be identified with the Green’s
Sfunction of our wave equation (21) or (31). For this Green’s function, if it cxists, has
the quantum levels themsclves as proper values. Onthe other hand, it is required
th?t Lanczos’ function should have the reciprocals of the quadtum levels as proper
values.
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with atomic dimensions, that is, compared with the region within
which (37) is markedly different from zero.! The radiation can there-
fore be estimated simply by the dipole moment which according to (37)
the whole atom possesses. We multiply (37) by a Cartesian co-ordinate
¢, and by the ““ density function ” p(x), (r?sin § in the present case)
and integrate over the whole space. According to (13), we get for the
component of the dipole moment in the direction ¢,
(38) Mg =27 % cw,n(_],""'l—;lﬁ bil" sin ggt (Em— Ey).

(&, m) / ’
Thus we really get a ““ Fourier development ™ of the atom’s electric
moment, in which only term differences appear as frequencies. The
Heisenberg matrix elements ¢/ come into the coeflicients in such a
manner that their co-operating influence on the intensity and polarisa-
tion of the part of the radiation concerned is completely intelligible
on the grounds of classical electrodynamics.

The present sketch of the mechanism of radiation is far from com-
pletely satisfactory and is in no way final. Assumption (36) makes
use, somewhat freely, of complex calculation, in order to put to one
side undesired components of vibration whose radiation cannot be
investigated at all in the simple way used for the dipole moment of
the entire atom, because the corresponding ether wave lengths (about
0-01 A) lie far below atomic dimensions. Moreover, if we integrate
over all space, then by (5) the space density (37) gives zero and not,
as is required, a finite value, independent of the time, which requires
to be normalised to the electronic charge. In conclusion, for complete-
ness, account should be taken of magnetic radiation, since if there is
a spatial distribution of electric currents, radiation is possible without
the appearance of an electric moment, e.g. with a frame aerial.

Nevertheless it appears to be a well-founded hope that a real
understanding of the nature of emitted radiation will be obtained on
the basis of one of the two very similar analytical mechanisms which
have been sketched here.

(Received March 18, 1926).

1 Ann. d. Phys. 79, p. 371, 1926, i.e. beginning of § 2, Part I. here.



Quantisation as a Problem of
Proper Values (Part III)

PERTURBATION THEORY, WITH APPLICATION TO THE STARK EFFECT
OF THE BALMER LINES

(Annalen der Physik (4), vol. 80, 1926)
Introduction. Abstract

As has already been mentioned at the end of the preceding paper,?
the available range of application of the proper value theory can by
comparatively elementary methods be considerably increased beyond
the ‘“directly soluble problems”; for proper values and functions
can readily be approximately determined for such boundary value
problems as are sufficiently closely related to a directly soluble
problem. In analogy with ordinary mechanics, let us call the mcthod
in question the perturbation method. It is based upon the important
property of continuity possessed by proper values and functions,?
principally, for our purpose, upon their continuous dependence on
the coefficients of the differential equation, and less upon the extent
of the domain and on the boundary conditions, since in our case the
domain (“‘ entire ¢-space ”’) and the boundary conditions (‘‘ remaining
finite ’) are generally the same for the unperturbed and perturbed
problems.

The method is essentially the same as that used by Lord Rayleigh
in investigating 3 the vibrations of a string with small inhomogeneities
in his Theory of Sound (2nd edit., vol. i., pp. 115-118, London, 1894).
This was a particularly simple case, as the differential equation of
the unperturbed problem had constant coefficients, and only the per-
turbing terms were arbitrary functions along the string. A complete
generalisation is possible not merely with regard to these points, but
also for the specially important case of several independent variables,
t.e. for partial differential equations, in which multiple proper values
appear in the unperturbed problem, and where the addition of a

1 Last two paragraphs of Part II.

2 Courant-Hilbert, chap. vi. §§ 2, 4, p. 337.

3 Courant-Hilbert, chap. v. § 5, 2, p. 241.
62
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perturbing term causes the splitting up of such values and is of the
greatest interest in well - known spectroscopic questions (Zeeman
effect, Stark effect, Multiplicities). In the development of the per-
turbation theory in the following Section I., which really yields nothing
new to the mathematician, I put less value on generalising to the
widest possible extent than on bringing forward the very simple
rudiments in the clearest possible manner. From the latter, any
desired generalisation arises almost automatically when needed. In
Section II., as an example, the Stark effect is discussed and, indeed,
by two methods, of which the first is analogous to Epstein’s method, by
which he first solved® the problem on the basis of classical mechanics,
supplemented by quantum conditions, while the second, which is much
more general, is analogous to the method of secular perturbations.?
The first method will be utilised to show that in wave mechanics also
the perturbed problem can be ‘“separated’ in parabolic co-ordinates,
and the perturbation theory will first be applied to the ordinary
differential equations into which the original vibration equation is
split up. The theory thus merely takes over the task which on the
old theory devolved on Sommerfeld’s elegant complex integration for
the calculation of the quantum integrals.® In the second method, it
is found that in the case of the Stark eflect an exact separation co-
ordinate system exists, quite by accident, for the perturbed problem
also, and the perturbation theory is applied directly to the partial
differential equation. This latter proceeding proves to be more
troublesome in wave mechanics, although it is theoretically superior,
being more capable of generalisation.

Also the problem of the intensity of the components in the Stark
effect will be shortly discussed in Section II. Tables will be calculated,
which, as a whole, agree even better with experiment than the well-
known ones calculated by Kramers with the help of the corre-
spondence principle.?

The application (not yet completed) to the Zeeman effect will
naturally be of much greater interest. It seems to be indissolubly
linked with a correct formulation in the language of wave mechanics
of the relativistic problem, because in the four-dimensional formulation
the vector-potential automatically ranks equally with the scalar. It
was already mentioned in Part I. that the relativistic hydrogen atom
may indeed be treated without further discussion, but that it leads to
‘“ half-integral ”” azimuthal quanta, and thus contradicts experience.
Therefore ‘‘ something must still be missing . Since then I have
learnt what is lacking from the most important publications of G. E.
Uhlenbeck and S. Goudsmit,® and then from oral and written com-
munications from Paris (P. Langevin) and Copenhagen (W. Pauli),

1 P. S. Epstein, Ann. d. Phys. 50, p. 489, 1916,

2 N. Bohr, Kopenhagener Akademie (8), 1V, 1, 2, p. 69 et seq., 1918.

3 A. Sommerfeld, Atombau, 4th ed., p. 772.

4 H. A. Kramers, Kopenhagener Akademie (8), I11., 3, p. 287, 1919.

5 G. E. Uhlenbeck and 8. Goudsmit, Physica, 1925 : Die Naturwissenschaften,
1926 ; Nature, 20th Feb., 1926 ; cf. also L. H. Thomas, Nature, 10th April, 1926.
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viz., in the language of the theory of electronic orbits, the angular
momentum of the electron round its axis, which gives it a magnetic
moment. The utterances of these investigators, together with two highly
significant papers by Slater ! and by Sommerfeld and Unséld ? dealing
with the Balmer spectrum, leave no doubt that, by the introduction
of the paradoxical yet happy conception of the spinning electron, the
orbital theory will be able to master the disquieting difficulties which
have latterly begun to accumulate (anomalous Zeeman effect ; Paschen-
Back effect of the Balmer lines ; irregular and regular Rontgen doublets;
analogy of the latter with the alkali doublets, etc.). We shall be obliged
to attempt to take over the idea of Uhlenbeck and Goudsmit into wave
mechanics. I believe that the latter is a very fertile soil for this idea,
since in it the electron is not considered as a point charge, but as
continuously flowing through space,® and so the unpleasing conception
of a “rotating point-charge ” is avoided. In the present paper, how-
ever, the taking over of the idea is not yet attempted.

To the third section, as ‘ mathematical appendix ”, have been
relegated numerous uninteresting calculations—mainly quadratures
of products of proper functions, required in the second section. The

Sformulae of the appendixz are numbered (101), (102), etc.

I. PErTURBATION THEORY
§ 1. A Single Independent Variable

Let us consider a linear, homogeneous, difierential expression of the
second order, which we may assume to be in self-adjoint form without
loss of generality, viz.

@ Liyl=py"+py -qy-

y is the dependent function ; p, p’ and ¢ are continuous functions of the
independent variable ¢ and p=0. A dash denotes differentiation with
respect to x (p’ is therefore the derivative of p, which is the condition
for self-adjointness).

Now let p(z) be another continuous function of x, which never

becomes negative, and also in general does not vanish. We consider
the proper value problem of Sturm and Liouville,*

@) L{y]+ Epy =0.

It is a question, first, of finding all those values of the constant E
(““ proper values ’) for which the equation (2) possesses solutions y(z),
which are continuous and not identically vanishing within a certain
domain, and which satisfy certain ‘“ boundary conditions’ at the
bounding points; and secondly of finding these solutions (‘‘ proper

1 J. C. Slater, Proc. Amer. Nat. Acad. 11, p. 732, 1925.

2 A. Sommerfeld and A. Unsold, Ztschr. f. Phys. 38, p. 259, 1926,
3 Cf. last two pages of previous paper.

4 Cf. Courant-Hilbert, chap. v. § 5, 1, p. 238 et seg.
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functions ”’) themselves. In the cases treated in atomic mechanics,
domain and boundary conditions are always “ natural ”. The domain,
for example, reaches from O to oo, when « signifies the value of the
radius vector or of an intrinsically positive parabolic co-ordinste,
and the boundary conditions are in these cases : remaining finite. Or,
when « signifies an azimuth, then the domain is the interval from
0 to 27 and the condition is : Repetition of the initial values of ¥ and ¥’
at the end of the interval (‘ periodicity ).

It is only in the case of the periodic condition that multiple, viz.
double-valued, proper values appear for one independent variable. By
this we understand that to the same proper value belong several
(in the particular case, two) linearly independent proper functions.
We will now exclude this case for the sake of simplicity, as it attaches
itself easily to the developments of the following paragraph. More-
over, to lighten the formulae, we will not expressly take into account
in the notation the possibility that a ‘ band spectrum ” (z.e. a con-
tinuum of proper values) may be present when the domain extends to
infinity.

Let now y =uy(z), v=1, 2, 3, . . ., be the series of Sturm-Liouville
proper functions ; then the series of functions u;(z)vp(z),7=1,2,3,.. .,
forms a complete orthogonal system for the domain; s.e. in the first
place, if u(x) and wu(z) are the proper functions belonging to the
values E; and Ej, then

3) / p(@)ui@)ur(@)dz =0 for 5 + k.

(Integrals without limits are to be taken over the domain, throughout
this paper.) The expression ““ complete ” signifies that an originally
arbitrary continuous function is condemned to vanish identically, by
the mere postulation that it must be orthogonal with respect to all the
functions ui(x)v/p(z). (More shortly: * There exists no further ortho-
gonal function for the system.”) We can and will always regard the
proper functions u;(x) in all general discussions as  normalised ", i.e.
we imagine the constant factor, which is still arbitrary in each of
them on account of the homogeneity of (2), to be defined in such a way
that the integral (3) takes the value unity for ¢ =%. Finally we again
remind the reader that the proper values of (2) are certainly all real.
Let now the proper values E; and functions ux) be known. Let
us, from now on, direct our attention specially to a definite proper
value, Ej say, and the corresponding function w;(x), and ask how these
alter, wheh we do not alter the problem in any way other than by
adding to the left-hand side of (2) a small * perturbing term ”, which
we will initially write in the form
@) - M(a)y.
In this A is a small quantity (the perturbation parameter), and 7(x)
18 an arbitrary continuous function of x. It is therefore simply a
matter of a slight alteration of the coefficient ¢ in the differential
expression (1). From the continuity properties of the proper quantities,
(D 894) F
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mentioned in the introduction, we now know that the altered Sturm-
Liouville problem

(2) L{y]l-Ary + Epy =0

must have, in any case for a sufficiently small A, proper quantities in
the near neighbourhood of Ej and w;, which we may write, by way
of trial, as

(5) E¥ =Ep+Aer;  wi® =w(x) + Avg(x).

On substituting in equation (2'), remembering that wu; satisfies (2),
neglecting A% and cutting away a factor A we get

(6) L[U;;] + Ekp’vk= (7‘ - ka)uk.

For the defining of the perturbation v; of the proper function, we
thus obtain, as a comparison of (2) and (6) shows, a non-homogeneous
equation, which belongs precisely to that homogeneous equation which
is satisfied by our unperturbed proper function w; (for in (6) the
special proper value E, stands in place of E). On the right-hand
side of this non-homogeneous equation occurs, in addition to known
quantities, the still unknown perturbation € of the proper value.

This occurrence of € serves for the calculation of this quantity
before the calculation of v;. It is known that the non-homogeneous
equation—and this is the starting-point of the whole perturbation theory
—for a proper value of the homogeneous equation possesses a solution
when, and only when, its right-hand side 18 orthogonal® to the allied
proper function (to all the allied functions, in the case of multiple
proper values). (The physical interpretation of this mathematical
theorem, for the vibrations of a string, is that if the force is in
resonance with a proper vibration it must be distributed in a very
special way over the string, namely, so that it does no work in
the vibration in question ; otherwise the amplitude grows beyond all
limits and a stationary condition is impossible.)

The right-hand side of (6) must therefore be orthogonal to w,
i.e.

(7 f(r —ep)u2de =0,
or
fru;ﬁdx
() €% = )
f puptdx
or, if we imagine u; already normalised, then, more simply,
(77) €= / ruzdex.

This simple formula expresses the perturbation of the proper value
(of first order) in terms of the perturbing function 7(z) and the un-
perturbed proper function ui(z). If we consider that the proper

1 Cf. Courant-Hilbert, chap. v. § 10, 2, p. 277.
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value of our problem signifies mechanical energy or is analogous to
it, and that the proper function w; is comparable to ‘‘motion with
energy E;”, then we see in (7") the complete parallel to the well-
known theorem in the perturbation theory of classical mechanics,
viz. the perturbation of the energy, to a first approximation, is equal
to the perturbing function, averaged over the unperturbed motion.
(It may be remarked in passing that it is as a rule sensible, or
at least aesthetic, to throw into bold relief the factor p(z) in the
integrands of all integrals taken over the entire domain. If we do this,
then, in integral (7”), we must speak ofprgg and not r(x) as the perturb-
ing function, and make a corresponding change in the expression (4).
Since the point is quite unimportant, however, we will stick to the
notation already chosen.)

We have yet to define vi(z), the perturbation of the proper function,
from (6). We solve! the non-homogeneous equation by putting for v
a series of proper functions, viz.

(8) UL(I) = i§1 ')’huz(-r);

and by developing the right-hand side, divided by p(x), likewise in a
series of proper functions, thus

9) <;% - ek>uk(x) = Ejl (),
where

C = / (r - exp)upu,dic

(10) = [rukuldx for e k&

=0 for 1 =k.

The last equality follows from (7). If we substitute from (8) and (9)
in (6) we get

00 a0
(11) z ‘yk[(L[ui} + Ekpu,) = 21 CripU;.
Since now u; satisfies equation (2) with E = E, it follows that
a0 a0
(12) '21 ')’kzP(Ek - Ei)ui = .21 CripWs.
1= 1=

By equating coefficients on left and right, all the y’s, except y, are
defined. Thus

o /rukuidx
(13) W= B Bk

while yu, as may be understood, remains completely undefined.
This indefiniteness corresponds to the fact that the postulation of

for v =k,

1 Cf. Courant-Hilbert, chap. v. § 5, 1, p. 240, and § 10, p. 279.
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normalisation is still available for us for the perturbed proper
function. If we make use of (8) in (5) and claim for w*(z) the same
normalisation as for w(z) (quantities of the order of A? being
neglected), then it is evident that vz =0. Using (13) we now obtain
for the perturbed proper function

@ u,v(x)/mku,-dx
() — ’ B, —
(14) wH(z) =) +X 20—
(The dash on the sigma denotes that the term i=£k has not to be
taken.) And the allied perturbed proper value is, from the above,

(15) Eg* = B+ / rutde

By substituting in (2') we may convince ourselves that (14) and (15)
do really ﬂatw,fy the proper value problem to the proposed degree of
approximation. This verification is necessary since the development,
assumed in (5), in ¢niegral powers of the perturbation parameter is no
necessary consequence of continuity.

The procedure, here explained in fair detail for the simplest case,
is capable of generalisation in many ways. In the first place, we can
of course consider the perturbation in a quite similar manner for the
second, and then the third order in A, etc., in each case obtaining first
the next approximation to the proper value, and then the correspond-
ing approximation for the proper function. In certain circumstances
it may be advisable—just as in the perturbation theory of mechanics—
to regard the perturbation function itself as a power series in A, whose
terms come into play one by one in the separate stages. These
questions are discussed exhaustively by Herr E. Fues in work which
is now appearing in connection with the application to the theory of
band spectra.

In the second place, in quite similar fashion, we can consider also
a perturbation of the term in y’ of the differential operator (1) just
as we have considered above the term —qy. The case is important,
for the Zeeman effect leads without doubt to a perturbation of this
kind—though “admittedly in an equation with several independent
variables. Thus the equation loses its self-adjoint form by the per-
turbation—not an essential matter in the case of a single variable.
In a partial differential equation, however, this loss may result in the
perturbed proper values no longer being real, though the perturbing
term is real; and naturally also conversely, an imaginary perturbing
term may have a real, physically intelligible perturbation as its
consequence.

We may also go further and consider a perturbation of the term
in y”. Indeed it is quite possible, in general, to add an arbitrary
“ infinitely small ” linear * and homogeneous differential operator, even
of higher order than the second, as the perturbing term and to calculate
the perturbations in the same manner as above. In these cases,

1 Even the limitation ‘ linear ”’ is not absolutely necessary.
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however, we would use with advantage the fact that the second and
higher derivatives of the proper functions may be expressed by
means of the differential equation itself, in terms of the zero and first
derivatives, so that this general case may be reduced, in a certain
sense, to the two special cases, first considered—perturbation of the
terms in y and y'.

Finally, it is obvious that the extension to equations of order
higher than the second is possible.

Undoubtedly, however, the most important generalisation is that
to several independent variables, i.c. to partial differential equations.
For this really is the problem in the general case, and only in
exceptional cases will it be possible to split up the disturbed partial
differential equation, by the introduction of suitable variables, into
separate differential equations, each only with one variable.

§ 2. Several Independent Variables (Partial Differential Equation)

We will represent the several independent variables in the formulae
symbolically by the one sign z, and briefly write / dx (instead of
dx,dz, . . .) for an integral extending over the multiply-

dimensioned domain. A notation of this type is already in use in the
theory of integral equations, and has the advantage, here as there,
that the structure of the formulae is not altered by the increased
number of variables as such, but only by essentially new occurrences,
which may be related to it.

Let therefore L{y]now signify a self-adjoint partial linear differential
expression of the second order, whose explicit form we do not require
to specify ; and further let p(x) again be a positive function of the
independent variables, which does not vanish in general. The postula-
tion * self-adjoint ” is mow no longer unimportant, as the property
cannot now be generally gained by multiplication by a suitably chosen
f (z), as was the case with onc variable. In the particular differential
expression of wave mechanics, however, this is still the case, as it
arises from a variation principle.

According to these definitions or conventions, we can regard
equation (2) of § 1,

() Lyl + Epy =0,

as the formulation of the Sturm-Liouville proper value problem in
the case of several variables also. Everything said there about the
proper values and functions, their orthogonality, normalisation, etc.,
as also the whole perturbation theory there developed—in short, the
whole of § 1—remains valid without change, when all the proper values
are sumple, if we use the abbreviated symbolism just agreed upon
above. And only ore thing does not remain valid, namely, that they
must be simple.
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Nevertheless, from the pure mathematical standpoint, the case
when the roots are all distinct is to be regarded as the general case
for several variables also, and multiplicity regarded as a special
occurrence, which, it is admitted, is the rule in applications, on account
of the specially simple and symmetrical structure of the differential
expressions I[y] (and the “ boundary conditions’’) which appear.
Multiplicity of the proper values corresponds to degeneracy in the
theory of conditioned periodic systems and is therefore especially
interesting for quantum theory.

A proper value Ej is called a-fold, when equation (2), for £ = Ej,
possesses not one but exactly a linearly independent solutions which
satisfy the boundary conditions. We will denote these by

(16) Uky, Urgy « « « Ukae

Then it is true that each of these a proper functions is orthogonal to
each of the other proper functions belonging to another proper value
(the factor p(z) being included; cf. (3)). On the contrary, these a
functions are not in general orthogonal to one another, if we merely
postulate that they are a linearly independent proper functions for
the proper value Ej, and nothing more. For then we can equally well
replace them by a arbitrary, linearly independent, linear aggregates
(with constant coefficients) of themselves. We may express this
otherwise, thus. The series of functions (16) is initially indefinite to
the extent of a linear transformation (with constant coefficients),
involving a non-vanishing determinant, and such a transformation
destroys, in general, the mutual orthogonality.

But through such a transformation this mutual orthogonality can
always be brought about, and indeed in an infinite number of ways ;
the latter property arising because orthogonal transformation does not
destroy the mutual orthogonality. We are now accustomed to include
this simply in normalisation, that orthogonality is secured for all
proper functions, even for those which belong to the same proper
value. We will assume that our s are already normalised in this
way, and of course for each proper value. Then we must have

an {[p Yuri(x)upy(€)de =0 when (k, 7) + (k' ¢')
=1 when k' =£k, as well as ¢’ =z2.

Each of the finite series of proper functions uy;, obtained for constant
k and varying 1, is then only still indefinite to this extent, that it is
subject to an orthogonal transformation.

We will now discuss, first in words, without using formulae, the
consequences which follow when a perturbmg term is added to the
differential equation (2). The addition of the perturbing term will,
in general, remove the above-mentioned symmetry of the differential
equation, to which the multiplicity of the proper values (or of certain
of them) is due. Since, however, the proper values and functions are
continuously dependent on the coefficients of the differential equation, a
small perturbation causes a group of a proper values, which lie close



QUANTISATION AND PROPER VALUES—III 71

to one another and to Ej, to enter in place of the a-fold proper value
Ey. The latter is split up. Of course, if the symmetry is not wholly
destroyed by the perturbation, it may happen that the splitting up
is not complete and that several proper values (still partly multiple)
of, in summa, equal multiplicity merely appear in the place of Ej
(““ partial removal of degeneracy ).

As for the perturbed proper functions, those a members which
belong to the a values arising from Ej; must evidently also on
account of continuity lie infinitely near the unperturbed functions
belonging to By, viz. ugi; ¢=1,2,3 . . . a. Yet we must remember
that the last-named series of functions, as we have established above,
is indefinite to the extent of an arbutrary orthogonal transformation.
One of the infinitely numerous definitions, which may be applied to the
series of functions, ug:; 1=1, 2,3 . . . a, will lie infinitely near the
series of perturbed functions; and if the value Ej is completely
split up, it will be a quate definite one! For to the separate simple
proper values, into which the value is split up, there belong proper
functions which are quite uniquely defined.

This unique particular specification of the wunperturbed proper
functions (which may fittingly be designated as the ‘ approximations
of zero order ” for the perturbed functions), which 1s defined by the
nature of the perturbation, will naturally not generally coincide with
that definition of the unperturbed functions which we chanced to
adopt to begin with. Each group of the latter, belonging to a
definite a-fold proper value Ej, will have first to be submitted to an
orthogonal substitution, defined by the kind of perturbation, before
it can serve as the starting-point, the ‘‘ zero approximation ”’, for
a more exact definition of the perturbed proper functions. The
defining of these orthogonal substitutions—one for each multiple proper
value—is the only essentially mew point that arises because of the
increased number of variables, or from the appearance of multiple
proper values. The defining of these substitutions forms the exact
counterpart to the finding of an approximate separation system for
the perturbed motion in the theory of conditioned periodic systems.
As we will see immediately, the definition of the substitutions can
always be given in a theoretically simple way. It requires, for each
a-fold proper value, merely the principal axes transformation of a
quadratic form of a (and thus of a finite number of) variables.

When the substitution has once been accomplished, the calculation
of the approximations of the first order runs almost word for word as
in § 1. The sole difference is that the dash on the sigma in equation
(14) must mean that in the summation all the proper functions
belonging to the value Ej, ¢.e. all the terms whose denominators
would vanish, must be left out. It may be remarked in passing that
it is not at all necessary, in the calculation of first approximations, to
have completed the orthogonal substitutions referred to for all multiple
proper values, but it is sufficient to have done so for the value £,
in whose splitting up we are interested. For the approximations
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of higher order, we admittedly require them all. In all other respects,
however, these higher approximations are from the beginning carried
out exactly as for simple proper values.

Of course it may happen, as was mentioned above, that the value
E;, either generally or at the initial stages of the approximation, is
not completely split up, and that multiplicities (“ degeneracies ) still
remain. This is expressed by the fact that to the substitutions already
frequently mentioned there still clings a certain indefiniteness, which
either always remains, or is removed step by step in the later
approximations.

Let us now represent these ideas by formulae, and consider as
before the perturbation caused by (4), § 1,

(4) - Ar(z)y,

i.e. we imagine the proper value problem belonging to (2) solved,
and now consider the exactly corresponding problem (2'),

2) Lly]-ary + Epy =0.

We again fix our attention on a definite proper value E;. Let
(16) be a system of proper functions belonging to it, which we
assume to be normalised and orthogonal to one another in the sense
described above, but not yet fitted to the particular perturbation in
the sense explained, because to find the substitution that leads to this
fitting is precisely our chief task! In place of (5), § 1, we must now
put for the perturbed quantities the following, :

(18) E*kl = E}c +)\€l ) u*u(x) = i K“uki(x) + /\'U[(Z)
=1

(=1,2,3 ... a),

wherein the v(x)’s are functions, and the ¢’s and the «;’s are systems
of constants, which are still to be defined, but which we initially do
not limit in any way, although we know that the system of coefficients
k;; must* form an orthogonal substitution. The index % should still
be attached to the three types of quantity named, in order to indicate
that the whole discussion refers to the kth proper value of the
unperturbed problem. We refrain from carrying this out, in order
to avoid the confusing accumulation of indices. The index % is to
be assumed fized in the whole of the following discussion, until the
contrary is stated.

Let us select one of the perturbed proper functions and values
by giving a definite value to the index ! in (18), and let us substi-
tute from (18) in the differential equation (2’) and arrange in powers
of A. Then the terms independent of A disappear exactly as in
§ 1, because the unperturbed proper quantities satisfy equation (2),

1 It follows from the general theory that the ¥erturbed system of functions
u¥*yy(x) must be orthogonal if the perturbation completely removes the degeneracy,
and may be assumed orthogonal although that is not the case.
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by hypothesis. Only terms containing the first power of A remain,
as we can strike out the others. Omitting a factor A, we get

(19) L[v,] + Ekp’vl = '?—:1 Kh'(r - €1p)uki,

and thus obtain again for the definition of the perturbation v; of
the jfunctions a mon-homogeneous equation, to which corresponds as
homogeneous equation the equation (2), with the particularvalue £ = E,
t.e. the equation satisfied by the set of functions w; t=1,2, ... a.
The form of the left side of equation (19) is independent of the index L.

On the right side occur ¢ and «j; the constants to be defined,
and we are thus enabled to evaluate them, even before calculating v;.
For, in order that (19) should have a solution at all, it is necessary
and sufficient that its right-hand side should be orthogonal to alil
the proper functions of the homogeneous equation (2) belonging to Ej.
Therefore, we must have

Z Kh'[(r - elp)uk,-ukmdx =0
- i=1
| (m=1,2,3 ... a),

1.e. on account of the normalisation (17),

@1) { Kim€l =i§1 Kl / U Mm@ T
l (m=1,2,3 ... a).

If we write, briefly, for the symmetrical matrix of constants, which

can be evaluated by quadrature,’

(22) { /mhumdx =€im
G, m=1,23 ... a)

(20)

then we recognise in

a
{ Kim€l = .El Kii€mi
. i

(2r)

l(m 1,2,3. a)
a system of o linear homogeneous equatlons for the calculation of
the o constants kp,; m=1, 2 ... a, where the perturbatlon € of

the proper value still occurs in the coefficients, and is itself un-
known. However, this serves for the calculation of €; before that of
the wkuy’s. For it is known that the linear homogeneous system (21') of
equations has solutions if, and only if, its determinant vanishes. This
yields the following algebraic equation of degree a for ¢; :

@) |

................
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We see that the problem is completely identical with the transforma-
tion of the quadratic form in a variables, with coeflicients e,;, to
its principal axes. The ‘ secular equation ” (23) yields a roots for ¢,
the “reciprocal of the squares of the principal axes”, which in
general are different, and on account of the symmetry of the eu’s
always real. We thus get all the a perturbations of the proper
values (I=1,2 . .. a)at the same time, and would have inferred the
splitting up of an a-fold proper value into exactly a simple values,
generally different, even had we not assumed it already, as fairly
obvious. For each of these e-values, equations (21’) give a system of
quantities x;;;2=1, 2, . . . a, and, as is known, only one (apart from
a general constant factor), provided all the ¢’s are really different.
Further, it is known that the whole system of a? quantities «;; forms an
orthogonal system of coefficients, defining as usual, in the principal
axes problem, the directions of the new co-ordinate axes with reference
to the old ones. We may, and will, employ the undefined factors just
mentioned to normalise the «;’s completely as ““ direction cosines ™,
and this, as is easily seen, makes the perturbed proper functions
u¥*1i(z) turn out normalised again, according to (18), at least in the
“ zero approximation ”’ (s.e. apart from the A-terms).

If the equation (23) has multiple roots, then we have the case
previously mentioned, when the perturbation does not completely
remove the degeneration. The perturbed equation has then multiple
proper values also and the definition of the constants «; becomes
partially arbitrary. This has no consequence other than that (as
18 always the case with multiple proper values) we must and may
acquiesce, even after the perturbation is applied, in a system of proper
functions which in many respects is still arbitrary.

The main task is accomplished with this transformation to principal
axes, and we will often find it sufficient in the applications in quantum
theory to define the proper values to a first and the functions
to zero approximation. The evaluation of the constants «; and
€; cannot be carried out always, since it depends on the solution
of an algebraic equation of degree a. At the worst there are
methods ! which give the evaluation to any desired approximation
by a rational process. We may thus regard these constants as known,
and will now give the calculation of the functions to the first approxima-
tion, for the sake of completeness. The procedure is exactly as in § 1.

We have to solve equation (19) and to that end we write v as
a series of the whole set of proper functions of (2),

(24) V() =(L,2,,) Vi kit ().

v
The summation is to extend with respect to &’ from 0 to o, and, for
each fixed value of %', for 4’ varying over the finite number of proper

functions which belong to Ej. (Now, for the first time, we take
account of proper functions which do not belong to the a-fold value

1 Courant-Hilbert, chap. i. § 3. 3, p. 14.
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E; we are fixing our attention on.) Secondly, we develop the right-
hand side of (19), divided by p(x), in a series of the entire set of
proper functions,

(25) . Elei(ﬁ —€z>uh 2 01 KUk,
wherein
(01, K= .2_31 Ki; / (r — ep)yuriup vde
(26) ] = 5.‘: Kii / rugupydx for k' =k
i=1
" for k' =k

(the last two equalities follow from (17) and (20) respectively). On
substituting from (24) and (25) in (19), we get

(27) (EL)'}’:, wi(Llwwe] + Erpurr) =(L§) Cl, ki PUK

Since uy; satisfies equation (2) with E = Ej, this gives
(28) Z ywip(Br — ExYupe = Z ¢ popUpr.
*'¥) 129}

By equating coefficients on right and left, all the y; ;+’s are defined,
with the exception of those in which &' =£. Thus

(29) Yo kv =E%I—L<Ily‘,h = E;:%EI 2'}31 K / rupupydx (for k' +k),
while those ’s for which &' =% are of course not fixed by equation (19).
This again corresponds to the fact that we have provisionally normal-
ised the perturbed functions u*y, of (18), only in the zero approximation
{(through the normalisation of the «’s), and it is easily recognised
again that we have to put the whole of the y-quantities in question
equal to zero, in order to brmg about the normalisation of the u*y’s
even in the first approximation. By substituting from (29) in (24),
and then from (24) in (18), we finally obtain for the perturbed proper
Sunctions to a first approximation

(30) u*ﬂx):él xli(uk;(x)+h(’§’) g::(IT) rul.,-uk,ira'x>
(=1,2 . a).

The dash on the second sigma 1ndlcates that all the terms with &' =%k
are to be omitted. In the apphcatlon of the formula for an arbitrary
k, it is to be observed that the «;’s, as obviously also the multiplicity
a of the proper value Ej, to which we have specially directed our
attention, still depend on the index &, though this is not expressed in
the symbols. Let us repeat here that the «;;’s are to be calculated as
a system of solutions of equations (21’), normalised so that the sum
of the squares is unity, where the coefficients of the equations are
given by (22), while for the quantity € in (21’), one of the roots of
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(23) is to be taken. This root then gives the allied perturbed
proper value, from

31) E*y=E; + e

Formulae (30) and (31) are the generalisations of (14) and (15) of § 1.

It need scarcely be said that the extensions and generalisations
mentioned at the end of § 1 can of course take effect here also. It is
hardly worth the trouble to carry out these developments generally.
We succeed best in any special case if we do not use ready-made
formulae, but go directly by the simple fundamental principles, which
have been explained, perhaps too minutely, in the present paper. I
would only like to consider briefly the possibility, already mentioned
at the end of § 1, that the equation (2) perhaps may lose (and indeed
in the case of several variables irreparably lose), its self-adjoint char-
acter if the perturbing terms also contain derivatives of the unknown
function. From general theorems we know that then the proper
values of the perturbed equation no longer need to be real. We can
illustrate this further. We can easily see, by carrying out the
developments of this paragraph, that the elements of determinant
(23) are nmo longer symmetrical, when the perturbing term contains
derivatives. It is known that in this case the roots of equation (23)
no longer require to be real.

The necessity for the expansion of certain functions in a series of
proper functions, in order to arrive at the first or zero approxima-
tion of the proper values or functions, can become very inconvenient,
and can at least complicate the calculation considerably in cases
where an extended spectrum co-exists with the point spectrum and
where the point spectrum has a limiting point (point of accumulation)
at a finite distance. This is just the case in the problems appearing
in the quantum theory. Fortunately it is often—perhaps always—
possible, for the purpose of the perturbation theory, to free oneself from
the generally very troublesome extended spectrum, and to develop the
perturbation theory from an equation which does not possess such a
spectrum, and whose proper values do not accumulate near a finite
value, but grow beyond all limits with increasing index. We will
become acquainted with an example in the next paragraph. Of course,
this simplification is only possible when we are not interested in a proper
value of the extended spectrum.

II. AppLicaTION TO THE STARK EFFECT

§ 3. Calculation of Frequencies by the Method which corresponds to
that of Epstein

If we add a potential energy +e¢Fz to the wave equation (5),
Part I. (p. 2), of the Kepler problem, corresponding to the influence
of an electric field of strength F' in the positive z-direction, on a negative
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electron of charge e, then we obtain the following wave equation for
the Stark effect of the hydrogen atom,

(32) vip+ B+ e =0,

which forms the basis of the remainder of this paper. In §5 we will
apply the general perturbation theory of § 2 directly to this partial
differential equation. Now, however, we will lighten our task by
introducing space parabolic co-ordinates A;, A,, ¢, by the following
equations, :

[x =1/A, cos ¢
+
(33) 19 =VAA; sin ¢
+
lz =3(A; —Ay).
A, and A, run from 0 to infinity ; the corresponding co-ordinate surfaces
are the two sets of confocal paraboloids of revolution, which have the
origin as focus and the positive (A,) or negative (A,) z-axis respectively
as axes, ¢ runs from O to 27, and the co-ordinate surfaces belonging

to it are the set of half planes limited by the z-axis. The relation of
the co-ordinates is unique. For the functional determinant we get

(34) (ﬁf)(qg Z10, 4.

The space element is thus

(35) dadydz =}(A, + A)dAdAyd .

We notice, as consequences of (33),

(36) P2yt =A Ay =22+ 22 = {1 (A, + A

The expression of (32) in the chosen co-ordinates gives, if we multiply
by (34) ! (to restore the self-adjoint form),

'aA M) o, (e 8A> i(xl A)gx
2m m[E()\ +) + 262 — 1eF(A 2 - \,2) b =0.

Here we can again take—and this is the why and wherefore of all
“methods ” of solving linear partial differential equations—the
function i as the product of three functions, thus,

(37) P =M\ AD,

1 So far as the actual details of the analysis are concerned, the simplest way to
get (32’), or, in general, to get the wave equation for any special co-ordinates, is to
transform not the wave equation itself, but the corresponding variation problem (cf.
Part I. p. 12), and thus to obtain the wave equation afresh as an Eulerian variation
groblem We are thus spared the troublesome evaluation of the second derivatives.

f. Courant-Hilbert, chap. iv. § 7, p. 193.
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each of which depends on only one co-ordinate. For these functions
we get the ordinary differential equations

od = 2
a—¢i = —N (I)
0 [y 0N\  27°m/ . nh? 1N,
(38) 'a"x;@l“ax')*?(‘20“1“’3"1” B gt a M =0
0 (y 0N, | 27*m/ nh® 1\,
ax;("zzﬂ@ #p (BePA Bl k4B g x)Az =0

wherein n and B are two further * proper value-like ” constants of in-
tegration (in addition to F), still to be defined. By the choice of
symbol for the first of these, we have taken into account the fact
that the first of equations (38) makes it take integral values, if ® and

(éi are to be continuous and single-valued functions of the azimuth ¢.
We then have .
(39) O =" g

" cos
and it is evidently sufficient if we do not consider negative values
of n. Thus
(40) n=0,1,2,3 ..
In the symbol used for the second constant 8, we follow Sommerfeld
(Atombau, 4th edit., p. 821) in order to make comparison easier.

(Similarly, below, with 4, B, C, D.) We treat the last two equations
of (38) together, in the form

3( A . o OV

(41) ag<§.ﬁ)+<D§ +A§+.‘B+—§—>A—O,

where

oy Di| _ _mmel 2x*mE By mm , o on?
(#2) Dz}*F“ZT’ =T Bz}—“hz—@z"‘ b O=-p

and the upper sign is valid for A=A,, £=A,, and the lower one for
A=A, £=),. (Unfortunately, we have to write ¢ instead of the
more appropriate A, to avoid confusion with the perturbation para-
meter A of the general theory, §§ 1 and 2.)

If we omit initially in (41) the Stark effect term D¢?, which we
conceive as a perturbing term (limiting case for vanishing field), then
this equation has the same general structure as equation (7) of Part I.,
and the domain is also the same, from 0 to co. The discussion is almost
the same, word for word, and shows that non-vanishing solutions,
which, with their derivatives, are continuous and remain finite within
the domain, only exist if either 4 >0 (extended spectrum, correspond-
ing to hyperbolic orbits) or

B A
43 —===4/-C= s k=
(43) Y_A¥0k+§,k0,l,2,...
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If we apply this to the last two equations of (38) and distinguish the
two k-values by suffixes 1 and 2, we obtain

[\/—A(kl+%+\/—0)=
+ +
|V =tk b+ v/ =0)
+ +
By addition, squaring and use of (42) we find
4mim?2et 272met
(45) A = - “"};‘(lﬁv" and E = - *}’Lzlz M
These are the well-known Balmer-Bohr elliptic levels, where as
principal quantum number enters
(46) l=k, +ky+n+1.
We get the discrete term spectrum and the allied proper functions
in a way sémpler than that indicated, if we apply results already

known in mathematical literature as follows. We transform first the
dependent variable A in (41) by putting

(44)

(47) A=gu
and then the independent & by putting
(48) 2y ~ A=,
We find for 4 as a function of n the equation

Py n+1du D B 1
41 ( — R =0.
(41 dp T dy <(2v—A>3" LAYy n>“

+

This equation is very intimately connected with the polynomials
named after Laguerre. In the mathematical appendix, it will be
z

shown that the product of e % and the nth derivative of the (n + k)th
Laguerre polynomial satisfies the differential equation

(103) g/”+1l;;}y'+<~};+< n+1\l>J 0,

and that, for a fixed », the functions named form the complete
system of proper functions of the equation just written, when £ runs
through all non-negative integral values. Thus it follows that, for
vanishing D, equation (41’) possesses the proper functions

-
(49) ur(n) =€ *Lu(n)
and the proper values
B n+1
50 ———=—n—+k (k=0,1,2...
(50) Tk )
+

—and no others! (See the mathematical appendix concerning the
remarkable loss of the extended spectrum caused by the apparently
inoffensive transformation (48); by this loss the development of the
perturbation theory is made much easier.)
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We have now to calculate the perturbation of the proper values
(50) from the general theory of § 1, caused by including the D-term
in (41'). The equation becomes self-adjoint if we multiply by »™+1.
The density function p(z) of the general theory thus becomes n. As
perturbation function r(x) appears

D
51 _—— 2 _gnte
+
(We formally put the perturbation parameter A=1; if we desired,
we could identify D or ¥ with it.) Now formula (7') gives, for the
perturbation of the kth proper value,

p [ ey

&= ¢ 43 i n
@V =) | oLy sm) ol
For the integral in the denominator, which merely provides for the
normalisation, formula (115) of the appendix gives the value

n+k) P
(53) SO
while the integral in the numerator is evaluated in the same place, as

[(n+Fk)!P :

(54) S (n? + 60k + 642 + 6k + 3n + 2).

v .

(52)

Consequently

D
55 p= — == (N% + 6nk + 6k2 + 6k + 3n +2).
(5) 4= = (g O n+2)
+
The condition for the kth perturbed proper value of equation (41')
and therefore, naturally, also for the kth discrete proper value of the

original equation (41) runs therefore

B n+1
56 —_— =
+

(x 1s retained meantime for brevity).

This result is applied twice, namely, to the last two equations
of (38) by substituting the two systems (42) of values of the constants
4, B, C, D; and it is to be observed that » is the same number
in the two cases, while the two k-values are to be distinguished by
the suffixes 1 and 2, as above. First we have

+k+€k

B
—\—/7:‘———72; +hy+ ey

(57) "
T MY +ky + €y,
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whence comes (B, + By’
5 B G St )
(08) 4 (l +€py + €k2)2
(applying abbreviation (46) for the principal quantum number). In
the approximation we are aiming at we may expand with respect
to the small quantities ¢ and get

By+By) ., 2
(59) a- BB P e

Further, in the calculation of these small quantities, we may use the
approximate value (45) for 4 in (55). We thus obtain, noticing the
two D values, by (42),

Fre . 2
{E[ﬂ: W5(n +G‘ﬂ]\1+6kl +6k1+3n +2)
(60) Fpae
€fg = — *64‘7}4'%265(7&2 + Gnkg + 6]{22 + Gk2 +3n + 2)

Addition gives, after an easy reduction,

SFhA(ky — K,

(61) €k T €k = “39;5;%5;‘2 ).
If we substitute this, and the values of A, B,, and B, from (42) in
(59), we get, after reduction,

o 2m®met 3 h*Fl(k, - k,)
(62) E=- B8 awme
This is our provisional conclusion ; it is the well-known formula of
Epstein for the term values in the Stark effect of the hydrogen
spectrum.

k, and k, correspond fully to the parabolic quantum numbers;
they are capable of taking the value zero. Also the integer n, which
has evidently to do with the equatorial quantum number, may from
(40) take the value zero. However, from (46) the sum of these three
numbers must still be increased by unity in order to yield the principal
quantum number. Thus (» + 1) and not » corresponds to the equatorial
quantum number. The value zero for the latter is thus automatically
excluded by wave mechanics, just as by Heisenberg’s mechanics.!
There 1s simply no proper function, i.e. no state of vibration, which
corresponds to such a meridional orbit. This important and gratify-
ing circumstance was already brought to light in Part I. in counting
the constants, and also afterwards in § 2 of Part 1. in connection with
the azimuthal quantum number, through the non-existence of states
of vibration corresponding to pendulum orbits ; its full meaning, how-
ever, only fully dawned on me through the remarks of the two
authors just quoted.

192; W. Pauli, jun., Ztschr. f. Phys. 36, p. 336, 1926 ; N. Bohr, Die Naturw. 1,
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For later application, let us note the system of proper functions
of equation (32) or (32') in “ zero approximation ”’, which belongs to the
proper values (62). It is obtained from statement (37), from con-
clusions (39) and (49), and from consideration of transformations (47)
and (48) and of the approximate value (45) of 4. For brevity, let us
call ay the “radius of the first hydrogen orbit . Then we get

1 h?
S/ = 4 T =
The proper functions (not yet normalised !) then read
sin é

non At A A
(64) Ynkk, = A 2Ag2e” 2as L’:»+k,<la2> 2+kn<ldi> cos

They belong to the proper values (62), where ! has the meaning
(46). To each non-negative integral trio of values n, k,, k, belong
sin
cos

(63)

(on account of the double symbol > two proper functions or ore,

according as n>0 or n=0.

§ 4. Attempt to calculate the Intensities and Polarisations of the
Stark Effect Patterns

I have lately shown? that from the proper functions we can calculate
by differentiation and quadrature the elements of the matrices, which
are allied in Heisenberg’s mechanics to functions of the generalised
position- and momentum-co-ordinates. For example, for the (r#')th
element of the matrix, which according to Heisenberg belongs to the
generalised co-ordinate q itself, we find

[ = Japterbari oyt
[ | fotatssapas. [p@rs@ras)

Here, for our case, the separate indices each deputise for a trio of
indices n, k,, k,, and further, = represents the three co-ordinates
r, 0, ¢. p(x) is the density function ; in our case the quantity (34).
(We may compare the self-adjoint equation (32') with the general
form (2)). The ““ denominator” (. . .)~% in (65) must be put in
because our system (64) of functions is not yet normalised.

According to Heisenberg,? now, if ¢ means a rectangular Cartesian
co-ordinate, then the square of the matrix element (65) is to be a measure
of the “ probability of transition ” from the rth state to the 'th, or,
more accurately, a measure of the intensity of that part of the radiation,
bound up with this transition, which is polarised in the g-direction.
Starting from this, I have shown in the above paper that if we make

(65)

1 Preceding paper of this collection.
2 W. Heisenberg, Ztschr. f. Phys. 33, p. 879, 1925; M. Born and P. Jordan,
Ztschr. f. Phys. 34, pp. 867, 886, 1925.
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certain simple assumptions as to the electrodynamical meaning of i,
the * mechanical field scalar ”’, then the matrix element in question is
susceptible of a very simple physical interpretation in wave mechanics,
namely, actually: component of the amplitude of the periodically oscil-
lating electric moment of the atom. The word component is to be taken
in a double sense : (1) component in the g-direction, ¢.e. in the spatial
direction in question, and (2) only the part of this spatial component
which changes in a time-sinusoidal manner with exactly the frequency
of the emitted light, | E, - E,|/h. (It is a question then of a kind of
Fourier analysis: not in harmonic frequencies, but in the actual
frequencies of emission.) However, the idea of wave mechanics is not
that of a sudden transition from one state of vibration to another, but
according to it, the partial moment concerned—as I will briefly name
it—arises from the sumultaneous existence of the two proper vibra-
tions, and lasts just as long as botlr are excited together.

Moreover, the above assertion that the ¢"’s are proportional to the
partial moments is more acéurately phrased thus. The ratio of, e.g.,
¢ to ¢ is equal to the ratio of the partial moments which arise
when the proper function i, and the proper functions - and i, are
stimulated, the first with any strength whatever and the last two with
strengths equal to one another—i.e. corresponding to normalisation.
To calculate the ratio of the intensities, the q-quotient must first be
squared and then multiplied by the ratio of the fourth powers of the
emission frequencies. The latter, however, has no part in the intensity
ratio of the Stark effect components, for there we only compare
intensities of lines which have practically the same frequency.

The known selection and polarisation rules for Stark effect com-
ponents can be obtained, almost without calculation, from the integrals
in the numerator of (65) and from the form of the proper functions
in (64). They follow from the vanishing or non-vanishing of the
integral with respect to ¢. We obtain the components whose
electric vector vibrates parallel to the field, i.e. to the z-direction, by
replacing the ¢ in (65) by z from (33). The expression for z, t.e.
3(A; =2,), does mot contain the azimuth ¢é. Thus we see at once
from (64) that a non-vanishing result after integration with respect
to ¢ can only arise if we combine proper functions whose »’s are
equal, and thus whose equatorial quantum numbers are equal, being
in fact equal to mn+1. TFor the components which vibrate per-
pendicular to the field, we must put ¢ equal to z or equal to y
(cf. equation (33)). Here cos ¢ or sin ¢ enters, and we see almost
as easily as before, that the n-values of the two combined proper
functions must differ exactly by unity, if the integration with respect
to ¢ is to yield a non-vanishing result. Hence the known selection
and polarisation rules are proved. Further, it should be recalled
again that we do not require to exclude any n-value after additional
reflection, as was necessary in the older theory in order to agree with
experience. Our 7 is smaller by 1 than the equatorial quantum
number, and right from the beginning cannot take negative values
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(quite the same state of affairs exists, we know, in Heisenberg’s
theory).

The numerical evaluation of the integrals with respect to A; and
A, which appear in (65) is exceptionally tedious, especially for those of
the numerator. The same apparatus for calculating comes into play as
served already in the evaluation of (52), only the matter is somewhat
more detailed because the two (generalised) Laguerre polynomials,
whose product is to be integrated, have not the same argument. By
good luck, in the Balmer lines, which interest us principally, one of
the two polynomials Ly, namely that relating to the doubly
quantised state, is either a constant or is a linear function of its
argument. The method of calculation is described more fully in the
mathematical appendix. The following tables and diagrams give the
results for the first four Balmer lines, in comparison with the known
measurements and estimates of intensity, made by Stark 2 for a field
strength of about 100,000 volts per centimetre. The first column
indicates the state of polarisation, the second gives the combination
of the terms in the usual manner of description, %.e. in our symbols :
of the two trios of numbers (k,, k,, n+1) the first trio refers to the
higher quantised state and the second to the doubly quantised state.
The third column, with the heading A, gives the term decomposition
in multiples of 3h2F/8172me (see equation (62)). The next column
gives the intensities observed by Stark, and 0 there signifies not
observed. The question mark was put by Stark at such lines as clash
either with irrelevant lines or with possible ‘“ ghosts ” and thus
cannot be guaranteed. On account of the unequal weakening of the
two states of polarisation in the spectrograph, according to Stark his
results for the || and for the _L. components of vibration are not directly
comparable with one another. Finally, the last column gives the
results of our calculation in relative numbers, which are comparable
for the collective components (|| and _L) of one line, e.g. of H,, but not
for those of H, with Hg, etc. These relative numbers are reduced
to their smallest integral values, i.e. the numbers in each of the four
tables are prime to each other.

1 W. Pauli, jun., Ztschr. f. Physik, 36, p. 336, 1926.
2'J. Stark, Ann. d. Phys. 48, p. 193, 1915.

[TABLES
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INTENSITIES IN THE STARK EFFECT OF THE BALMER LINES
TABLE 1
H,

Polarisation. Combination. A Obscrved Intensity. = Calculated Intensity.
(111) (011) 2 1 729
I (102) (002) 3 11 2304
(201) (101) 4 1-2 1681
(201) (011) 8 ] 0 1
Sum : 4715
(003) (002) N 0 (| 4608
(111) (002) '] = \ 882
L (102) (101) 1 1 1936
(102) (011) 5 0 16
(201) (002) 6 0 18
t
Sum *: 4715
o o - Undisplaalic;m|)0né;t:s]|:1lvcd.
TABLE 2
Hp
Polarisation, Combination. A Observed Intensity. : Calculated Intensity.
(112) (002) 0 1-4 0
(211) (101) 2 1-2 9
— (4) 1 0
I (211) (011) 6 4-8 81
(202) (002) 8 9-1 384
(301) (101) 10 115 361
— (12 1 0
(301) (011) 14 0 1
Sum : 836
—_ (0) 1-4 0
(1(1)2) (011) 2 33 72
(103) (002) 4 o, 384
N (211) (002) 4 } 12-6 { 72
(202) (101) 6 97 204
—_ (8) 1-3 0
(202) (011) 10 141 6
(301) (002) 12 1? 8
Sum : 836
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INTENSITIES IN THE STARK EFFECT OF THE BALMER LINES
TABLE 3
H‘/
Polarisation. Combinz;tion. A Observed Intensity. | Calculated Intensity.
(221) (011) 2 1-6 15 625
(212) (002) 5 1-5 19 200
(311) (101) 8 1 1521
I (311) (011) 12 2:0 16 641
(302) (002) 15 72 115 200
(401) (101) 18 10-8 131 769
(401) (011) 22 17? 729
Sum : 300 685
(113) (002) 0 \ 7.9 115 200
(221) (002) 0 J < 26 450
(212) (101) 3 32 46 128
(212) (011) 7 1-2 5 808
L (203) (002) 10 \ 43 76 800
(311) (002) 10 J 11 250
(302) (101) 13 6-1 83 232
(302) (011) 17 1-1 2 592
(401) (002) 20 1 4 050
Sum : * .}00 (185
* Undisplaced components halved.
TABLE 4
Hs
Polarisation. Combination. A Observed Intensity. qu;ui;£ctl Intensity. ]
(222) (002) 0 0 0 j
(321) (101) 4 1 ]
(321) (011) 8 1-2 32
(312) (002) 12 1-5 72
1 (411) (101) 16 1-2 18
(411) (011) 20 1-1 18
(402) (002) 24 2:8 180
(601) (101) 28 72 242
(601) (011) 32 17? 2
Sum: 572
(222) (011) 2 1-3 36
(213) (002) 6 \ 3.9 162
(321) (002) 6 J 36
(312) (101) 10 21 98
(312) (011) 14 1 2
+ (303) (002) 18 |\ 2.0 90
(411) (002) 18 J 9
(402) (101) 22 24 125
(402) (011) 26 1-3 5
(501) (002) 30 17? 9
Sum : 572
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In the diagrams it is to be noticed that, on account of the huge
differences in the theoretical intensities, some theoretical intensities

K \ \ \ \
¢ 3 2 2 34
theor.
$ 4 32 234
Fi0. 1.—Ha ||-components,
exp. ,
| RN I
210 8 6 % 2 0 2 4% 6 8 1012
theor

[] ]
%“ wees 2 2 68mn0 W

F16, 3,—Hpg ||-components.

exp.
701
theon
. . l l . (]
6 5 1701 56
Fia. 2.—H, 1 -components
exp,
2 2 I 2 2
| Il

borol | |
2.1 8 6 4 2 0 2 4 6 8 10 12

theor

o
2

12 10 6 4 2 46 10 12

F16. 4.—Hg 1 -components.
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cannot be truly represented to scale, as they are much too small.
These are indicated by small circles.

A consideration of the diagrams shows that the agreement is
tolerably good for almost all the strong components, and taken all
over it is somewhat better than for the values deduced from corre-
spondence considerations.! Thus, for example, is removed one of the
most serious contradictions which arose, in that the correspondence
principle gave the ratio of the intensities of the two strong _L_-components
of Hg, for A=4 and 6, inversely and indeed very much out, in fact

exp

2 8 1 2 & 5 2 2 5 8 2 5 B 22

theor

[ I T O

2 m s 2 & 5 2 2 5 8 w s o8 >

F1a. 5.—H, ||-components.

as almost 1:2, while experiment requires about 5:4. A similar
thing occurs with the mean (A=0) _L-components of H,, which
decidedly preponderate experimentally, but are given as far too weak
by the correspondence principle. In our diagrams also, it is admitted
that such “reciprocities” between the intensity ratios of intense
components demanded by theory and by experiment are not entirely
wanting. The theoretically most intense ||-component (A =3) of H,
is furthest out; by experiment, it should lie between its neighbours
in intensity. And the two strongest ||-components of Hg and two
L-components (A=10, 13) of H, are given “reciprocally ” by the

1 H. A. Kramers, Ddnische Akademie (8), iii. 3, p. 333 et seq., 1919.
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exp.
20 77 3 0 7 g o0 3 7 0 2 77 20
rheor
. [ ] ] . ,
20 77 73 0 7 3 o 3 7 0 3 77 20
Fi16. 6.—H+y 1 -comronents.
exp
NENEN NENREN
2 28 2 0 6 2 8 4 ¢ & 2 6 20 2% 28 32
/heorer.
] | l ’ ' l | | o
¥ 8 2 8 20 2% 28 32

282 08 2 8 4
Fic. 7.—H3 ||-components.
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theory. Of course, in both cases the intensity ratios, both experi-
mentally and theoretically, are pretty near unity.

Passing now to the weaker components, we notice first that the
contradiction which exists for some weak observed components of
Hpg to the selection and polarisation rules, of course still remains
in the new theory, since the latter gives these rules in conformity
with the older theory. However, components which are extremely weak
theoretically are for the most part unobserved, or the observations
are questionable. The strength ratios of weaker components to one
another or to stronger ones are ulmost never given even approximately
correctly ; cf. especially H, and H;. Such serious mistakes in the
experimental determination of the blackening are of course out of
the question.

Considering all this, we might feel inclined to be very sceptical of

exp.

i

30 26 22 718 1% 10

2
L] ]

0 M 18 22 26 30

theoret.,

L] L] o | l

30 26 22 13 ™ 10 6 2 2 6 10 ™ 18 22 26 30

F16. 8.—Hs 1 -components.

the thesis that the integrals (65) or their squares arec measures of
intensity. I am far from wishing to represent this thesis as irrefutable.
There are still many alterations conceivable, and these may, perhaps,
be necessitated by internal reasons when the theory is further extended.
Yet the following should be remembered. The whole calculation has
been performed with the unperturbed proper functions, or more pre-
cisely, with the zero approximation to the perturbed ones (cf.above § 2).
It, therefore, represents an approximation for a vanishing field strength!
However, just for the weak or almost vanishing components we
should expect theoretically a fairly powerful growth with increasing
field strength, for the following reason. According to the view of
wave mechanics, as explained at the beginning of this section,
the integrals (65) represent the amplitudes of the electrical partial
moments, which are produced by the distribution of charges which
flow round about the nucleus within the atom’s domain. When for
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a line component we get as a zero approximation very weak or even
vanishing Intensity, this is not caused in any way by the fact that
to the simultaneous existence of the two proper vibrations corre-
sponds only an insignificant motion of electricity, or even none at all.
The vibrating mass of electricity—if this vague expression is allowed—
may be represented as the same in all components, on the ground of
normalisation. Rather is the reason for the low line intensity to
be found in a high degree of symmetry in the motion of the electricity,
through which only a small, or even no, dipole moment arises (on the
contrary, e.g., only a four-pole moment). Therefore it is to be
expected that the vanishing of a line component in presence of per-
turbations of any kind is a relatively unstable condition, since the
symmetry is probably destroved by the perturbation. And thus
it may be expected that weak or vanishing components gain quickly
in intensity with increasing field strength.

This has now actually been observed, and the intensity ratios,
indeed, alter quite considerably with field strength, for strengths of
about 10,000 gauss and upwards; and, if I understand aright, in the
way ! shown by the present general discussion. Certain information
on the question whether this really explains these discrepancies could
of course only be got from a continuation of the calculation to the
next approximation, but this is very troublesome and complicated.

The present considerations are of course nothing but the * transla-
tion” into the language of the new theory of very well-known considera-
tions which Bohr ? has brought forward in connection with calculation
of line intensities by means of the principle of correspondence.

The theoretical intensities given in the tables satisfy a fundamental
requirement, which is set up not only by intuition but also by experi-
ment,? viz., the sum of the intensities of the ||-components is equal
to that of the _L_-components. (Before adding, undvsplaced components
must be halved—as a compensation for the duplication of all the
others, which occur on both sides.) This makes a very welcome
““ control  for the arithmetic.

It is also of interest to compare the total intensities of the four
lines by using the four “sums” given in the tables. For this pur-
pose I take back from my numerical calculations the four factors,
which were omitted in order to represent the intensity ratios within
each of the four line groups by the smallest integers possible, and
multiply by them. Further, I multiply each of these four products
by the fourth power of the appropriate emission frequency. Thus I
obtain the following four numbers :

8 -
forH, . .. &353594—1 =0-003433 . . .
for Hy ... 2 000173

1 J. Stark, Ann. d. Phys. 43, p. 1001 et seq., 1914.
2 N. Bohr, Danische Akademie (8), iv. 1. 1, p. 35, 1918.
3 J. Stark, Ann. d. Phys. 43, p. 1004, 1914.
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28.3%.11%.71

for H‘/ o .. ——5—.—71—3—'—‘00008312 . e
forHy ... i g =0:0004849 . . .

I give these numbers with still greater reserve than the former ones
because I am not sure, theoretically, about the fourth power of the
frequency. Investigations! which I have
\ lately published seem to call, perhaps, for
\ the sixth. The above method of calculation
Y corresponds exactly to the assumptions of
. Born, Jordan, and Heisenberg.?2 Fig. 9 re-
) presents the results diagrammatically.
. Actual measured intensities of emission
. lines, which are known to depend greatly on
the conditions of excitation, naturally cannot
‘[n..\] here be used in a comparison with experi-

ence. From his researches® on dispersion
and magneto-rotation in the neighbourhood
of H, and Hg, R. Ladenburg has, with
Fio. 9.—Total Intensities. ~ F. Reiche,* calculated the value 4-5 (limits
3 and 6) for the ratio of the so-called ‘‘ elec-
tronic numbers >’ of these two lines. If I assume that the above
numbers may be taken as proportional to Ladenburg’s ® expression,

A s H Ty Hy
b

E'qk(lkil/o,
g

then they may be reduced to (relative) “ electronic numbers ” by
division by vg3, i.e. by

<§6>3’ < 136>3’ <%>3, and <§>3respectively.

Hence we obtain the four numbers,
1-281, 0-2386, 0-08975, 0-04418.

The ratio of the first to the second is 5:37, which agrees sufficiently
with Ladenburg’s value.

1 Equation (38) at end of previous paper of this collection. The fourth allows for
the fact that for the radiation it is a question of the square of the acceleration and not.
of the electric moment itself. In this equation (38) occurs explicitly another factor
(Ex —Em)/h. This is occasioned by the appearance of /¢t in statement (36).
Addition at proof correction : Now I recognise this ¢/0t to be incorrect, though I hoped
it would make the later relativistic generalisation easier. Statement (36), loc. cit., is
to be replaced by y¢. The above doubts about the fourth power are therefore dissolved.

2 Cf. M. Born and P. Jordan, Ztschr. f. Phys. 34, p. 887, 1925.

3 R. Ladenburg, Ann. d. Phys. (4), 38, p. 249, 1912,

4 R. Ladenburg and F. Reiche, Die Naturwissenschaften, 1923, p. 584.

8 Cf. Ladenburg-Reiche, loc. cit., the first formula in the second column, p. 584.
The factor v, in the above expression comes from the fact that the ‘ transition
probability  a is still to be multiplied by the * energy quantum  to give the
intensity of the radiation.
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§5. Treatment of the Stark Effect by the Method which
corresponds to that of Bohr

Mainly to give an ezample of the general theory of § 2, I wish to
outline that treatment of the proper value problem of equation (32),
which must have been adopted, if we had not noticed that the perturbed
equation is also exactly ““separable” in parabolic co-ordinates. We
therefore now keep to the polar co-ordinates r, 6, ¢, and thus replace
z by rcos§. We also introduce a new variable n for r by the
transformation

"Bt
(66) o \/ Sl

(which is closely akin to transformation (48) for the parabolic co-
ordinate ). For one of the unperturbed proper values (45), we get
from (66)

ny _ 27:

(66) =
where a, is the same constant as in (63). (“ Radius of the innermost
hydrogen orbit.”’) If we introduce this and the unperturbed value
(45) into the equation (32), which is to be treated, then we obtain

, 1 n,
(67) V2¢+<—4—gncose+ﬁ>gb—0,
where for brevity

_ ' FP
(68) g=- de '

The dash on the Laplacian operator is merely to signify that in it the
letter 7 is to be written for the radius vector.

In equation (67) we conceive I to be the proper value, and the term
in g to be the perturbing term. The fact that the perturbing term
contains the proper value need not trouble us in the first approxima-
tion. If we neglect the perturbing term, the equation has as proper
values the natural numbers
(69) 1=1,2,3,4 . . .

and no others. (The extended spectrum is again cut out by the artifice
(66), which would be valuable for closer approximations.) The allied
proper functions (not yet normalised) are

S .
(70) binm = Py (cos 6) o> (m) . me” 2LEY3 ().
Here P} signifies the mth “ associated ” Legendre function of the
nth order, and L2"75is the (2n + 1)th derivative of the (n +I)th Laguerre
polynomial.! So we must have

n<l,

1 T lately gave the proper functions (70) (see Part I.), but without noticing their
connection with the Laguerre polynomials. For the proof of the above representation,
see the Mathematical Appendix, section 1.
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. o . . . .
otherwise L% would vanish, because the number of differentiations

would be greater than the degree. With reference to ' this, the
numbering of the spherical surface harmonics shows that I is an *-fold
proper value of the unperturbed equation. We now investigate the
splitting up of a definite value of I, supposed fixed in what follows,
due to the addition of the perturbing term.

To do this we have, wn the first place, to normalise our proper
functions (70), according to § 2. From an uninteresting calculation,
which is easily performed with the aid of the formulae in the appendix,*
we get as the normalising factor

1 Pa+l [n (I-n-1)!
) \/71\/ \/n+m \/ (n+)1p’

if m =0, but, for m =0, \—;—2 times this value. Secondly, we have to
calculate the symmetrical matrix of constants e, according to
(22). The r there is to be identified 2 with our perturbing function
—gn®cos O sin 0, and the proper functions, there called wu, are to
be 1dentified with our functions (70). The fixed suffix %, which
characterises the proper value, corresponds to the first suffix ! of
Yinm, and the other suffix ¢+ of w; corresponds now to the pair of
suffixes n, m in Yyu,. The matrix (22) of constants forms in our case
a square of /2 rows and /2 columns. The quadratures are easily carried
out by the formulae of the appendix and yield the following results.
Only those elements of the matrix are different from zero, for which
the two proper functions ium, Yum, to be combined, satisfy the
following conditions simultaneously

1. The upper indices of the ‘ associated Legendre functions ”’ must
agree, i.e. m=m’.

2. The orders of the two Legendre functions must differ exactly by
unity, t.e. |n—-n'|=1.

3. To each trio of indices Inm, if m +0, there belong, according to
(70), two Legendre functions, and thus also two proper functions ium,
which only differ from each other in that one contains a factor
cos m¢ and the other sin m¢. The third condition reads: we may
only combine sine with sine, or cosine with cosine, and not sine with
cosine.

The remaining non-vanishing elements of the desired matrix
would have to be characterised from the beginning by two index-pairs
(n, m) and (n+1, m). (We renounce any idea of showing the fixed
index [ explicitly.) Since the matrix is symmetrical, one index pair
(n, m) is sufficient, if we stipulate that the first index, <.e. =, shall
mean the greater of the two orders n, n’, in every case.

1 T¢ is to be noticed that the density function, generally denoted by p(z), reads as
n 8in 6 in equation (67), because the equation must be multiplied by »? sin 6, in order
to acquire self-adjoint form.
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Then the calculation gives

(72) wm = — 6lg J '"2)”2 m),

4n2 -

We have now to form the determinant ( 2) out of these elements.
It is advantageous to arrange its rows as well as its columns on the
following principle. (To fix our ideas, let us speak of the columns,
and therefore of the index-pair characterising the first of the two
Legendre functions.) Thus: first come all terms with m =0, then all
with m =1, then all with m =2, etec., and finally, all terms with m =1 1,
which last is the greatest value that m (like n) can take. Inside
each of these groups, let us arrange the terms thus: first, all terms
with cos m¢, and then all with sin me¢. Within these ““ half groups ”
let us arrange them in order of increasing », which runs through the
values m, m+1, m+2 . . . [-1, t.e. (I -m) values in all.

If we carry this out, we find that the non-vanishing elements (72)
are exclusively confined to the two secondary diagonals, which lie
immediately alongside the principal diagonal. On the latter are
the proper value perturbations which are to be found, but taken
negatively, while everywhere else are zeros. Further, the two
secondary diagonals are interrupted by zeros at those places, where
they break through the boundaries between the so-called * half-
groups ”’, in very convenient fashion. Hence the whole determinant
breaks up into a product of just so many smaller determinants as
there are ‘ half-groups” present, viz. (20-1). It will be sufficient
if we consider one of them. We write it here, denoting the desired
perturbation of the proper value by e (without suffix) :

—€  €milm 0 0 0o |
€m+1,m —€  €mi2m 0 0
0 €mso,m —€ €migm ... 0
(73) 0 0 €m+3,m —€ 0
(.) .. 0. c. . 0 .. .0. .el-lvm C.

If we divide each term here by the common factor 6lg of the enn’s
(cf. (72)), and for the moment regard as the unknown

*_ _ €

(14) k* = 6l
the above equation of the (I —m)th degree has the roots
(75) B=+(l-m-1), +£(l-m-3), +£({l-m-=5).
where the series stops with 41 or O (inclusive) according as the
degree 1 —m 1s even or odd. The proof of this is unfortunately
not to be found in the appendix, as I have not been successful in
obtaining it.

If we form the series (75) for each of the valuesm=0,1,2 ... (I-1),
then we have in the numbers

(76) €= - 6lgk*
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the complete set of perturbations of the principal quantum number 1.
In order to find the perturbed proper values E (term-levels) of the
equation (32), we have only to substitute (76) in

2m%me?
n B=-pirep
taking into account the signification of the abbreviations g (see (68))
and a, (see (63)).
After reducing this gives

2m’met 3 RAFIL*

hAE 8 mwime
Comparison with (62) shows that k* is the difference k, -k, of the
parabolic quantum numbers. From (75), bearing in mind the range
of values of m referred to above, we see that 4* may also take the
same values as the difference just mentioned, viz. 0, 1,2 ... (I-1).
Also, if we take the trouble to work it out, we will find for the
multiplicity, in which A* and the difference k, %, appear, the same
value, viz. [ —|k*|.

We have thus obtained the proper value perturbations of the
first order also from the general theory. The next step would be
the solution of the system (21°) of linear equations of the general
theory for the r-quantities. These would then yield, according to
(18) (provisionally putting A=0), the perturbed proper functions
of zero order; this is nothing more than a representation of the
proper functions (64) as linear forms of the proper functions (70).
In our case the solution of (21') would naturally be anything but
unique, on account of the considerable multiplicity of the roots e.
The solution is made much simpler if we notice that the equations
break up into just as many groups, viz. (21-1), or, retaining the
former expression, half-groups, with completely separated variables,
as the determinant investigated above contains factors like (73); and
if we further notice that it is allowable, after we have chosen a
definite e-value, to regard only the variables « of a single half-group
as different from zero, of that half-group, in fact, for which the deter-
minant (73) vanishes for the chosen e-value. The definition of this
half-group of variables is then unique.

But our object, viz. to illustrate the general method of §2 by an
example, has been sufficiently attained. Since the continuation of
the calculation is of no special physical interest, I have not troubled
to bring the determinantal quotients, which we immediately obtain
for the coefficients «, into a clearer form, or to work out the transforma-
tion to principal axes in any other way. :

On the whole, we must admit that in the present case the method
of secular perturbations (§5) is considerably more troublesome than
the direct application of a system of separation (§3). I believe that
this may also be true in other cases. In ordinary mechanics it is,
as we know, usually quite the reverse.

(78) E=
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III.—MATHEMATICAL APPENDIX

Prefatory Note :—It is not intended to supply in uninterrupted
detail all the calculations omitted from the text. Without that, the
present paper has already become too long. In general, only those
~ methods of calculation will be briefly described which another might
utilise with advantage in similar work, if somethlng better does not
occur to him—as it may easily do.

§1. The Generalised Laguerre Polynomials and
Orthogonal Functions

The kth Laguerre polynomial L;(x) satisfies the differential equation!
(101) xy" + (1 -2)y +ky=0.
If we first replace £ by n +%, and then differentiate n times, we find
that the nth derivative of the (n+k)th Laguerre polynomial, which
we will always denote by I 1, satisfies the equation
(102) ay"+(m+1-x)y +ky=0.

x
Moreover, by an casy transformation, we find that for e 2L, i(x)
the following equation holds,
n+l, 1 n+1\ 1

(103) y" +——1/ +( 4+<k+—2—> UE>y=0.
This found an application in equation (41') of § 3. The allied generalised

Laguerre orthogonal functions are
n

(104) xze ’L,, i)
Their equation, it may be remarked in passing, is
1 1 n+1\1 n?
4 " o w -_ —
(105) Yy +< 47 <L ) > z 4x2>y 0.

Let us turn to equation (103), and consider there that » is a fixed
(real) integer, and k is the proper value parameter. Then, accord-
ing to what has been said, in the domain £>0, at any rate, the
equation has the proper functions,

(106) 2L (a),
belonging to the proper values,
(107) k=0,1,2,3, ...

In the text it is maintained that it has no further values, and,
above all, that it possesses no continuous spectrum. This seems
paradoxical, for the equation

dzz/ n+1dy < 1 1>

de2t e dg T\ T @hrnrip e 0
! Courant-Hilbert, chap. ii. § 11, 5, p. 78, equation (72).
(D 894) H

(108)
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into which (103) is transformed by the substitution

(109) ¢=(k+ "jl)x
docs possess a continuous spectrum, if in it we regard
(110) o I—

(2k +n +1)2

as proper value parameter, viz. all positive values of E are proper
values (cf. Part L., analysis of equation (7)). The reason why no
proper values k& of (103) can correspond to these positive K-values is
that by (110) the k-values in question would be complex, and this is
impossible, according to general theorems.! Each real proper value of
(103), by (110), gives rise to a negative proper value of (108). Moreover,
we know (cf. Part I.) that (108) possesses absolutely no negative proper
values other than those that arise, as in (110), from the series (107).
There thus remains only the one possibility, that in the series (107)
certain negative k-values are lacking, which appear on solving (110)
for k&, on account of the double-valuedness when extracting the root.
But this also is impossible, because the &-values in question turn out to
be algebraically less than _n ;—]
cannot be proper values of equation (103). The series of values
(107) is thus complete. Q.E.D.

The above supplements the proof that the functions (70) are the
proper functions of (67) (with the perturbing term suppressed), allied
to the proper values (69). We have only to write the solutions of (67)
as a product of a function of 8, ¢ and a function of . The equation
in 1 can readily be brought to the form of (105), the only difference
being that our present » 1s there always an odd number, namely, the
(2n +1) which is to be found there.

and thus, from general theorems,?

§ 2. Definite Integrals of Products of Two Laguerre
Orthogonal Functions

The Laguerre polynomials can all be obtained, in the following
manner, as coefficients of the powers of the auxiliary variable ¢,
in the expansion in a series of a so-called * generating function ” 3

_ at
(111) >: Li(z )k, e 1!

If we replace & by n+k and then dlfferentlate n times with respect
to x, we obtain the generating function of our generalised polynomials,

at
e 1-t
(112) E L@ )(n IC) [ =(- ])n(] )n"ﬁ‘
1 Coumnt Hilbert, chap. iii. § I 2, p. 115.
2 Courant-Hilbert, chap. v. § 5. '240.

3 Courant- Hxlbart, chap. ii. § 11, 5, p 78, equation (68).
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In order to evaluate with its help integrals such as appeared for
the first time in the text in expression (52), or, more generally, such
as were necessary in §4 for the calculation of (65), and also in §5,
we proceed as follows. We write (112) over again, providing both
the fixed index » and the varying index k£ with a dash, and replacing
the undefined ¢ by s. These two equations are then multiplied
together, 7.e. left side by left side, and right side by right. Then
we multiply further by
(113) xPe=*
and integrate with respect to x from 0 to . p is to be a positive
integer—this being sufficient for our purpose. The integration is
practicable by elementary methods on the right-hand side, and we get
® 02 tksk' cn/ PO o ) n y
(1) X /0 o=t L () L% 4 v (2)d
(1-t)P-"(1-s)p-"

(1 —tsyp+t

We have now, on the left, the desired integrals like pearls on a string,
and we merely detach the one we happen to need by searching
on the right for the coefficient of t*s¥’. This coefficient is always
a simple sum, and, in fact, in the cases occurring in the text, always
a finite sum with very few terms (up to three). In general, we have

[/ aPe=t Lt (@) L w(@)de=p! (n+k)! (0 +&)!
(115)| 0 <k ¥

E‘O (=1)piw+kik l-f@’c :ZX{’,—_?‘%F')( —];— 1>‘

The sum stops after the smaller of the two numbers %, £’. It often, in
actual fact, begins at a positive value of =, as binomial coefficients,
whose lower number is greater than the upper, vanish. For example,
in the integral in the denominator of (52), we put p=n=n’, and
k'=k. Then 7 can take only the one value %, and we can establish
statement (53) of the text. In the integral of the numerator in (52),
only p has another value, namely p=n+2. 7 now takes the values
k-2, k-1, and k, and after an easy reduction we get formula (54)
of the text. In the very same way the integrals appearing in §5
are evaluated by Laguerre polynomials.

We can now, therefore, regard integrals of the type of (115) as
known, and we have only to concern ourselves with those occurring
in § 4 in the calculation of intensities (cf. expression (65) and functions
(64) which have to be substituted there). In this type, the two
Laguerre orthogonal functions, whose product is to be integrated,
have not the same argument, but, for example, in our case, have the
arguments A,/la, and A,/l'a,, where [ and I are the principal quantum
numbers of the two levels that we have combined. Let us consider,
as typical, the integral

=(-1)*p!

© at+B ,
(116) J = /0 aPe” 2 LT, (aw)LT v (Br)da.
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Now we can proceed in a superficially different way. At first, the
former procedure still goes on smoothly ; only on the right-hand side
of (114) a somewhat more complicated expression appears. In the
denominator occurs the power of a quadrinomial instead of that of a
binomial, as before. And this makes the matter somewhat confusing,
for the right-hand side of (114) becomes five-fold instead of three-fold,
and thus the right side of (115) becomes a three-fold instead of a simple
sum. I found that the following substitution made things clearer:

(117) ?%ﬁm=y.
Hence

ar = l+oi—_§ y
(118) < a+ﬂ>

Bx= <1 - Zi@y.

After expanding the two polynomials in their Taylor series, which
are finite and have similar polynomials as coefficients, we get, using
the abbreviations

2 a-f
¢ = —— =y
(119) TTa+B 4 a+p
the following,
+1 4 k " AMw (@ FAfu TRHA W tu
(120) J=o?*1 T X (=1)"\T— | Y7t e Lyily) Lk (y)dy.
A—=0 u=0 H H:. 0

Thus the calculation of J is reduced to the simpler type of integral
(115). In the case of the Balmer lines, the double sum in (120) is
comparatively tractable, for one of the two k-values, namely, the one
referring to the two-quantum level, never exceeds unity, and thus
A may have two values at most, and, as it turns out, u four values at
most. The circumstance that out of the polynomials referring to
the two-quantum level, none but

Lo=1, Li=-a+1, Li=-1,

appear, permits further simplifications. Nevertheless we must calcu-
late out a number of tables, and it is much to be regretted that the
figures given in the tables of the text for the intensities do not allow
their general construction to be seen. By good fortune the additive
relations between the ||- and the _L components hold good, so that
we may, with some probability, feel ourselves safe from arithmetical
blunders at least.

§ 3. Integrals with Legendre Functions

There are three simple integral relations between associated
Legendre functions, which are necessary for the calculations in § 5.
For the convenience of others, I will state them here, because I was
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not able to discover them in any of the places I searched. We use
the customary definition,

. dmP, (cos 8

(121) P (cos 8) =sin™ 6 —(c-l“(?o(?ﬁ) 9),
Then the following holds,

" (n+m)!
(122) /0 [P™ (cos 6) 2 sin 0.6 = Zn (T

(the normalising relation).

Moreover,
(123) / P (cos G) P (cos ) cos 6 sin 6 df =0

for |n —n'| 1.
On the other hand

(124) / "P™ (cos B)P™_, (cos §) cos 0 sin 0 df
0

_nEm ("o, o s _ 2(n+m)!
_271!7;:1 /0 [Pn_ 1 (COS 0)] sin 0 (10 = (71;):2 i’)z = 1) '
The last two relations decide the  selection ”’ of the determinantal
terms on page 95 of the text. They are, moreover, of fundamental
importance for the theory of spectra, for it is obvious that the selection
principle for the azimuthal quantum number depends on them (and
on two others which have sin? 6 in place of cos § sin 6).

(13

Addition at Proof Correction

Hr. W. Pauli, jun., informs me that he has arrived at the following
closed formulae for the total intensity of the lines in the Lyman and
Balmer series, through a modification of the method given in section 2
of the Appendix. For the Lyman series these are

1 1 27, (I-1)%-1,
=R p)s =
and for the Balmer series
(1 1>. _.(1-2)8-3
ma=B(g=p); Jia= Ty
The total emission intensities (square of amplitudes into fourth power
of the frequency) are proportional to these expressions, within the
series in question. The numbers obtained from the formula for
the Balmer series are in complete agreement with those given on
pp. 91, 92.

(312 - 4)(52 - 4).

Ziirich, Physical Institute of the University.
(Received May 10, 1926.)



Quantisation as a Problem of
Proper Values (Part IV')

( Annalen der Physik (4), vol. 81, 1926)

AmstracT: § 1. Elimination of the energy-parameter from the
vibration equation. The real wave equation. Non-conservative
systems. § 2. Extension of the perturbation theory to perturba-
tions which explicitly contain the time. Theory of dispersion.
§ 3. Supplementing § 2. Excited atoms, degenerate systems, continuous
spectrum. § 4. Discussion of the resonance case. § 5. Generalisation
for an arbitrary perturbation. § 6. Relativistic-magnetic generalisa-
tion of the fundamental equations. § 7. On the physical significance
of the field scalar.

§ 1. Elimination of the Energy-parameter from the Vibration Equation.
The Real Wave Equation. Non-conservative Systems

The wave equation (18) or (18”) of Part II., viz.
WL -V) 0% _

(1) V=" e =0
or

, 8
(1) v+ (B = V)=0,

which forms the basis for the re-establishment of mechanics attempted
in this series of papers, suffers from the disadvantage that it expresses
the Jaw of vanation of the ““ mechanical field scalar” i, neither
uniformly nor genmerally. Equation (1) contains the energy- or
frequency-parameter F, and is valid, as is expressly emphasized
in Part II., with a definite E-value inserted, for processes which
depend on the time exclusively through a definite periodic factor:

4 2riEt
(2) iy ~real part of <e ) )
Equation (1) is thus not really any more general than equation (1')
1 Cf. Ann. d. Phys. 79, pp. 361, 489 ; 80, p. 437, 1926 (Parts I., IT., ITL.); further,

on the connection with Heisenberg’s theory, ibid. 79, p. 734 (p. 45).
102
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which takes account of the circumstance just mentioned and does not
contain the time at all.

Thus, when we designated equation (1) or (1), on various occasions,
as “the wave equation”, we were really wrong and would have been
more correct if we had called it a * vibration-” or an ‘‘ amplitude- "
equation. However, we found it sufficient, because to 4t is linked
the Sturm-Liouville proper value problem—just as in the mathe-
matically strictly analogous problem of the free vibrations of strings
and membranes—-and not to the real wave equation.

As to this, we have always postulated up till now that the potential
energy V is a pure function of the co-ordinates and does not depend
explicitly on the time. There arises, however, an urgent need for the
extension of the theory to non-conservative systems, because it is
only in that way that we can study the behaviour of a system under
the influence of prescribed external forces, e.g. a light wave, or a
strange atom flying past. Whenever V contains the time explicitly,
1t is manifestly mpossible that equation (1) or (1') should be satisfied
by a function ¢, the method of dependence of which on the time is
as given by (2). We then find that the amplitude equation is no
longer sufficient and that we must search for the real wave equation.

For conservative systems, the latter is easily obtained. (2) is
equivalent to

0% 4mrR?
(3) o Az
We can eliminate % from (1') and (3) by differentiation, and obtain
the following equation, which is written in a symbolic manner, easy
to understand :

2 ]6772 o0
o (e

This equation must be satisfied by every ¢ which depends on the time
as in (2), though with E arbitrary, and consequently also by every ¢
which can be expanded in a Fourier series with respect to the time
(naturally with functions of the co-ordinates as coefficients).
Equation (4) is thus evidently the uniform and general wave equation
Sor the field scalar .

It is evidently no longer of the simple type arising for vibrating
membranes, but is of the fourth order, and of a type similar to that
occurring in many problems in the theory of elasticity.! However,
we need not fear any excessive complication of the theory, or any
necessity to revise the previous methods, associated with equation (1°).
If V does not contain the time, we can, proceeding from (4), apply (2),
and then split up the operator as follows :

, 8n? ,  8m? 8n% . 8n?
(4) (V” Vs E><V2—7§V - —h-2-E>¢=O.

(2

1 E.g., for a vibrating plate, v ~V-u+ '\t* =0. Cf. Courant-Hilbert, chap. v. § 8,
p. 256.
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By way of trial, we can resolve this equation into two ‘‘ alternative ”’
equations, namely, into equation (1') and into another, which only
differs from (1) in that its proper value parameter will be called
minus E, instead of plus K. According to (2) this does not lead to
new solutions. The decomposition of (4) is not absolutely cogent,
for the theorem that ““ a product can only vanish when at least one
factor vanishes ”” is not valid for operators. This lack of cogency,
however, is a feature common to all the methods of solution of partial
differential equations. The procedure finds its subsequent justifica-
tion in the fact that we can prove the completeness of the discovered
proper functions, as functions of the co-ordinates. This completeness,
coupled with the fact that the imaginary part as well as the real part
of (2) satisfies equation (4), allows arbitrary initial conditions to be
fulfilled by ¢ and oy /et.

Thus we see that the wave equation (4), which contains in itself
the law of dispersion, can really stand as the basis of the theory
previously developed for conservative systems. The generalisation
for the case of a time-varying potential function nevertheless demands
caution, because terms with time derivatives of V may then appear,
about which no information can be given to us by equation (4), owing
to the way we obtained it. In actual fact, if we attempt to apply
equation (4) as it stands to non-conservative systems, we meet with
complications, which seem to arise from the term in @V /ot. Therefore,
in the following discussions, I have taken a somewhat different route,
which is much easier for calculations, and which I consider is justified
in principle.

We need not raise the order of the wave equation to four, in order
to get rid of the energy-parameter. The dependence of i on the time,
which must exist if (1) is to hold, can be expressed by

, o 2mi
®) T e
as well as by (3). We thus arrive at one of the two equations
8m? 47y O
" 2f ¢ o 2 .
(") V= VT 5 =0

We will require the complex wave function s to satisfy one of these two
equations.  Since the conjugate complex function i will then satisfy
the other equation, we may take the real part of y as the real wave
function (if we require it). In the case of a conservative system
(4") is essentially equivalent to (4), as the real operator may be split

up into the product of the two conjugate complex operators if V does
not contain the time.

§ 2. Extension of the Perturbation Theory to Perturbations containing
the Time explicitly. Theory of Dispersion

Our main interest is not in systems for which the time and spatial
variations of the potential energy V are of the same order of magnitude,
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but in systems, conservative in themselves, which are perturbed by
the addition of small given functions of the time (and of the co-ordinates)
to the potential energy. Let us, therefore, write

(5) V= Vo(-”’) + 7’(13, t))

where, as often before, « represents the whole of the configuration co-
ordinates. We regard the unperturbed proper value problem (r=0) as
solved. Then the perturbation problem can be solved by quadratures.

However, we will not treat the general problem immediately,
but will select the problem of the dispersion theory out of the vast
number of weighty applications which fall under this heading, on
account of its striking importance, which really justifies a separate
treatment in any case. Here the perturbing forces originate in an
alternating electric field, homogeneous and vibrating synchronously in
the domain of the atom; and thus, if we have to do with a linearly
polarised monochromatic light of frequency v, we write

(6) r(x, t) = A(x) cos 2mvt,
and hence
(5" V = Vy(x) + A(x) cos 2mt.

Here A(z) is the negative product of the light-amplitude and the
co-ordinate function which, according to ordinary mechanics, signifies
the component of the electric moment of the atom in the direction
of the electric light-vector (say — FZez;, if F is the light-amplitude,
e, z; the charges and z-co-ordinates of the particles, and the light
is polarised in the z-direction). We borrow the time-variable part of
the potential function from ordinary mechanics with just as much or
as little right as previously, e.g. in the Kepler problem, we borrowed
the constant part.
Using (5), equation (4") becomes

2 .
(7) V2¢ - %};( VO + A CcOoS 277Vt)!// F 4;;::1/ aalf = 0.
For A4 =0, these equations are changed by the substitution
2mikL
8) p=u(@)e

(which is now to be taken in the literal sense, and does not imply
pars realis) into the amplitude equation (1') of the unperturbed
problem, and we know (cf. § 1) that the totality of the solutions of
the unperturbed problem is found in this way. Let

Epand wy(x) ; £=1,2,3,...

be the proper values and normalised proper functions of the unper-
turbed problem, which we regard as known, and which we will
assume to be discrete and different from one another (non-degenerate
system with no continuous spectrum), so that we may not become
involved in secondary questions, requiring special consideration.

Just as in the case of a perturbing potential independent of the
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time, we will have to seek solutions of the perturbed problem in the
neighbourhood of each possible solution of the unperturbed problem,
and thus in the neighbourhood of an arbitrary linear combination

of the wu’s, which has constant co-efficients lfmm (8), the uz’s to be

2miE,

t
combined with the appropriate time factors e* % } The solution of

the perturbed problem, lying in the neighbourhood of a definite linear
combination, will have the following physical meaning. It will be
this solution which first appears, if, when the light wave arrived, pre-
cisely that definite linear combination of free proper vibrations was
present (perhaps with trifling changes during the ¢ excitation ™).

Since, however, the equation of the perturbed problem is also
homogeneous—Ilet this want of analogy with the * forced vibrations ”
of acoustics be expressly emphasized—it is evidently sufficient to seek
the perturbed solution in the neighbourhood of each separate

| Skt

(9) up(x)e A’
as we may then linearly combine these ad lib., just as for unperturbed
solutions.

To solve the first of equations (7) we therefore now put

2rikit

(10) Y=u(x)e * +wz, ).
[The lower svmbol, v.e. the second of equations (7), is henceforth
left on one side, as it would not yield anything new.] The additional
term w(z, t) can be regarded as small, and its product with the perturb-
ing potential neglected. Bearing this in mind while substituting from
(10) in (7), and remembering that w(z) and £, are proper functions and
values of the unperturbed problem, we get

[ 82 47y ow  8n? 2niknt

2, 7 ’ e
W~ 5 Vo ——; - =-2-A cos Qmvt . uze h
VW= 2 Vo = o = e ke b
(1) 472 2"1.I(l"k+lw) 2ril g by
= 2Au;;.<ch ) +e >
(2

This equation is readily, and really only, satisfied by the substitution

2mit, . 2mit
(12) w=w,(x)e n Bt ) +w_(x)e h i —ho),
where the two functions w.. respectively obey the two equations
8 2 2
(13) Vews + (B o = Vohos =7 Au,

This step is essentially unique. At first sight, we apparently can add
to (12) an arbitrary aggregate of unperturbed proper vibrations. But
this aggregate would necessarily be assumed small, of the first order
(since this has been assumed for w), and thus does not interest us at
present, as it could only produce perturbations of the second order at
most.
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In equations (13) we have at last those non-homogencous equations
we might have expected to encounter—in spite of the lack of analogy
with real forced vibrations, as emphasized above. This lack of
analogy is extraordinarily important and manifests itself in equations
(13) in the two following particulars. Firstly, as the *“ second member ”’
(““ exciting force ), the perturbation function A4(x) does not appear
alone, but multiplied by the amplitude of the free vibration already
present. This is indispensable if the physical facts are to be properly
taken into account, for the reaction of an atom to an incident light
wave depends almost entirely on the state of the atom at that time,
whereas the forced vibrations of a membrane, plate, etc., are known
to be quite independent of the proper vibrations which may be
superimposed on them, and thus would yield an obviously wrong
representation of our case. Secondly, in place of the proper value
on the left-hand side of (13), .. as “ exciting frequency ’, we do
not find the frequency v of the perturbing force alone, but rather in
one case added to, and in the other subtracted from, that of the free
vibration already present. This is equally indispensable. Otherwise
the proper frequencies themselves, which correspond to the term-
frequencies, would function as resonance-points, and not the differences
of the proper frequencies, as is demanded, and is really given by
equation (13). Moreover, we see with satisfaction that the latter
gives only the differences between a proper frequency which is actually
excited and all the others, and not the differences between pairs of
proper frequencies, of which no member is excited.

In order to investigate this more closely, let us complete the
solution. By well-known methods® we find, as simple solutions of

(13),
/ :1 € (l],nun(x)
(14) u)+(‘r) znzl EL_‘E"J /lV

where
(15) Wi = / A)u(@)un(z)p(x)de.

p(x) is the ‘‘density function ”, 7.e. that function of the position-
co-ordinates with which equation (1') must be multiplied to make it
self-adjoint. The u,(x)’s are assumed to be normalised. It is further
postuldted that hv does mot agree exactly with any of the differences
E.—E, of the proper values. 'This “ resonance case” will be dealt
with later (cf. § 4).

If we now form from (14), using (12) and (10), the entire perturbed
vibration, we get

..7r1t ...vr'tt
2nikat ® W (Ek-t-hv) eh (Ex~ hv)
(16) SRR < e
=w(@)e + +3 T drun(@) 5 .
1‘[’ e i & Can(T) Ei~E,+hv E;,.—En~hv

Thus in the perturbed case, along with each free vibration w(x)
occur in small amplitude all those vibrations u,(x), for which a’y,, +0.

1 Cf. Part IIL §§ 1 and 2, text beside equations (8) and (24).
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The latter are exactly those, which, if they exist as free vibrations
along with w;, give rise to a radiation, which is (wholly or partially)
polarised in the direction of polarisation of the incident wave. For
apart from a factor, @'y, is just the component amplitude, in this
direction of polarisation, of the atom’s electric moment, which is
oscillating with frequency (Ej—E,)/h, according to wave mechanics,
and which appears when w; and u, exist together! The simul-
taneous oscillation, however, takes place with neither the proper
frequency E,/h, peculiar to these vibrations, nor the frequency v of
the light wave, but rather with the sum and difference of v and Ei/h
(¢.e. the frequency of the one existing free vibration).

The real or the imaginary part of (16) can be considered as the
real solution. In the following, however, we will operate with the
complex solution itself.

To see the significance that our result has in the theory of dis-
persion, we must examine the radiation arising from the simultancous
existence of the excited forced vibrations and the free vibration,
already present. For this purpose, we form, following the method we 2
have always adopted above—a criticism follows in § 7—the product of
the complex wave function (16) and its conjugate, s.e. the norm of the
complex wave function . We notice that the perturbing terms are
small, so that squares and products may be neglected. After a simple
reduction ® we obtain

_ N2 ¢ . el (EI:"Eu)a'/.'n“k(-";)un(i’f).
(17 Y =g ()2 +2 cos 2mvt n%l (Bp—Ey)? - hv?

According to the heuristic hypothests on the electrodynamical
significance of the field scalar i, the present quantity—apart from a
multiplicative constant—represents the electrical density as a function
of the space co-ordinates and the time, if « stands for only three space
co-ordinates, v.e. if we are dealing with the problem of one electron.
We remember that the same hypothesis led us to correct selection
and polarisation rules and to a very satisfactory representation of
intensity relationships in our discussion of the hydrogen Stark effect.
By a natural gencralisation of this hypothesis—of which more in § 7—
we regard the following as representing in the general case the density
of the electricity, which is ‘‘associated ” with one of the particles of
classical mechanics, or which “ originates in it ”’, or which “ corre-
sponds to it in wave mechanics” : the sntegral of Yy taken over all
those co-ordinates of the system, which in classical mechanics fix the

1 Cf. what follows, and § 7.

2 Cf. end of paper on Quantum Mechanics of Heisenberg, etc., and also the
Calculation of Intensities in tho Stark Effect in Part III. At the first quoted place,
thePreal f,Irt of Yy was proposed instead of Y. This was a mistake, which was corrected
in Part III.

3 We assume as previously, for the sake of simplicity, the proper functions un(x)
to be real, but notice that it may somctimes be much more convenient or even
imperative to work with complex aggregates of the real proper functions, e.g. in the

proper functions of the Kepler problem to work with e+ m™9¢ instead of :ions me.
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position of the rest of the particles, multiplied by a certain constant,
the classical ““ charge " of the first particle. The resultant density of
charge at any point of space is then represented by the sum of such
integrals taken over all the particles.

Thus in order to find any space component whatever of the total
wave-mechanical dipole moment as a function of the time, we must,
on this hypothesis, multiply expression (17) by that function of
the co-ordinates which gives that particular dipole - component in
classical mechanics as a function of the configuration of the point
system, e.g. by
(18) My = Zciy;,

if we are dealing with the dipole moment in the y-direction. Then
we have to integrate over all the configuration co-ordinates.
Let us work this out, using the abbreviation

(19) b = / M (@) u(@)un(z)p(z)de.

Tet us elucidate further the definition (15) of the a’,’s by recalling that
if the incident clectric light-vector is given by

(20) E.=7F cos 2mut,
then

A(@)= - F . My(x),
e @) @)

where M,(z) =Ze;z;.
If we put, in analogy with (19),
(22) i = / M@)o (@)un(z)p(2)dz,
then @', = — Fa,, and by carrying out the proposed integration we
find,
. ® (En- Ey)apby

(23) [Mbfpde =+ 2 cos 2mut 5 ((E‘f— Tk))rfl‘h‘vﬁz

for the resulting electric moment, to which the secondary radiation, caused
by the incident wave (20), us to be attributed.

The radiation depends of course only upon the second (time-
variable) part, while the first part represents the time-constant dipole
moment, which is possibly connected with the originally existing free
vibration. This variable part seems fairly promising and may meet
all the demands we are accustomed to make on a ‘ dispersion for-
mula .  Above all, let us note the appearance of those so-called
“ negative ”’ terms, which—in the usual phraseology—correspond to
the probability of transition to a lower level (E, < E;), and to which
Kramers! was the first to direct attention, from a correspondence

1 H. A. Kramers, Nature, May 10, 1924 ; ibid. August 30, 1924 ; Kramers and
W. Heisenberg. Ztschr. f. Phys. 31, p. 681, 1925. The description given in the latter
paper of the polarisation of the scattered light (equation 27) from correspondence
principles, is almost identical formally with ours.
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standpoint. Generally, our formula—despite very different ways of
thought and expression—may be characterised as really identical in
form with Kramer’s formula for secondary radiation. The important
connection between ay,, bA,,, the coefficients of the secondary and of
the spontaneous radiation, is brought out, and indeed the secondary
radiation is also described accurately with respect to its condition of
polarisation.

I would like to believe that the absolute value of the scattered
radiation or of the induced dipole moment is also given correctly by
formula (23), although it is obviously within the bounds of possibility
that an error in the numerical factor may have occurred in applying
the heuristic hypothesis introduced above. At any rate the physical
dimensions are right for from (18), (19), (21), and (22) a4, and by, are
electric moments, since the squared integrals of the proper functions
were normalised to unity. If v is far removed from the emission
frequency in question, the ratio of the induced to the spontaneous
dipole moment is of the same order of magnitude as the ratio of the
additional potential energy Fay, to the ‘‘ energy step” Ei - K.

§ 3. Supplements to § 2. Excited Atoms, Degenerate Systems,
Continuous Spectrum

For the sake of clearness, we have made some special assumptions,
and put many questions aside, in the preceding paragraph. These have
now to be discussed by way of supplement.

First : what happens when the light wave meets the atom, when the
latter is in a state in which not merely one free vibration, u;, is excited
as hitherto assumed, but several, say two, u; and % ? As remarked
above, we have in the perturbed case simply to combine additively
the two perturbed solutions (16) corresponding to the suftix &£ and the
suffix I, after we have provided them with constant (possibly complex)
coefficients, which correspond to the strength presumed for the free
vibrations, and to the phase relationship of their stimulation. Without
actually performing the calculation, we see that in the expression for
Y and also in the expression (23) for the resulting electric moment,
there then occurs not merely the corresponding linear aggregate of the
terms previously obtained, .e. of the expressions (17) or (23) written
with %, and then with [. We have in addition ‘‘ combination terms ”
namely, considering first the greatest order of magnitude, a term in

2n1
(24) wr@)uy(x)e b FE
which gives again the spontaneous radiation, bound up with the co-

1 Tt is hardly necessary to say that the two directnons which, for simplicity, we
have designated as ‘ z-direction ”’ and ‘‘ y-direction ”’ do not require to be exactly
perpendicular to one another. The one is the direction of polarisation of the incident
wave ; the other is that polarisation component of the secondary wave, in which we
are specially interested.
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existence of the two free vibrations ; and secondly perturbing terms of
the first order, which are proportional to the perturbing field amplitude,
and which correspond to the interaction of the forced vibrations
helonging to u; with the free vibration w;—and of the forced vibracions
belonging to u; with ;. The frequency of these new terms appearing
in (17) or (23) is not v but

(25) | v+ (Bi— Bk |,

as can easily be seen, still without carrying out the calculation. (New
““ resonance denominators ”’, however, do not occur in these terms.)
Thus we have to do here with a secondary radiation, whose frequency
neither coincides with the exciting light-frequency nor with a spon-
taneous frequency of the system, but is a combination frequency of
both.

The existence of this remarkable kind of secondary radiation was
first postulated by Kramers and Heisenberg (loc. cit.), from corre-
spondence considerations, and then by Born, Heisenberg, and Jordan
from consideration of Teisenberg’s quantum mechanics.! As far as
I know, it has not yet been demonstrated experimentally. The present
theory also shows distinctly that the occurrence of this scattered
radiation is dependent on special conditions, which demand researches
expressly arranged for the purpose. Firstly, two proper vibrations uy
and », must be strongly excited, so that all experiments made on atoms
in their normal statc —as happens in the vast majority of cases—are to
be rejected. Secondly, at least one third state of proper vibration must
exist (1.e. must be possible—it need not be excited), which leads to power-
ful spontaneous emission, when combined with w; as well as with w;.
For the extraordinary scattered radiation, which is to be discovered, is
proportional to the product of the spontaneous emission coefficients in
question (@b, and apb,). The combination (ux, ;) need not, in
- itself, cause a strong emission. It would not matter if—to use the
language of the older theory--this was a * forbidden transition ”.
Yet in practice we must also demand that the line (u, w) should
actually be emitted strongly during the experiment, for this is the only
means of assuring ourselves that both proper vibrations are strongly
excited in the same individual atoms and in a sufficiently great number
of them. 1f we reflect now that in the powerful term-series mostly
examined, 7.e. in the ordinary s-, p-, d-, f-series, the relations are
generally such that two terms, which combine strongly with a third,
do not do so with one another, then a special choice of the object
and conditions of the research seems really necessary, if we are to
expect the desired scattered radiation with any certainty, especially
as its frequency is not that of the exciting light and thus it does
not produce dispersion or rotation of the plane of polarisation, but
can only be observed as light scattered on all sides.

As far as 1 see, the above-mentioned dispersion theory of
Heisenberg, Born, and Jordan does not allow of such reflections as we

1 Born, Heisenberg, and Jordan, Ztschr. f. Phys. 35, p. 572, 1926,
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developed by H. Weyl,! and though only for ordinary differential
equations, the extension to partials is permissible. In all brevity, the
state of the case is this.2 If the homogeneous equation belonging to
the non-homogeneous equations (13), s.e. the vibration equation {1’) of
the unperturbed system, possesses in addition to a point-spectrum a
continuous one, which stretches, say, from E=a to E=», then an
arbitrary function f(z) naturally cannot be developed thus,

() @)= £ fo.uale), where bu= [ f@hun(olp(@lo

in terms of the normalised discrete proper functions wu,(z) alone,
but there must be added an integral expansion in terms of the proper
solutions wu(x, £), which belong to the proper values a < E <b, and
so we have

1) f@)= & buralo)+ [ e, DY,

where to emphasize the analogy we have intentionally chosen the
same letter for the “ coefficient function” @(¥) as for the discrete
coefficients ¢,. If now we have normalised, once for all, the proper
solution u(z, E) by associating with it a suitable function of E, in such
a way that

(28) / dap(z) / (e, Eyu(z, B')AE =1 or =0

according to whether E belongs to the interval E’, E’ + A or not, then
in (27) under the integral sign we substitute from

e dE=tm gy fos. [ e v e,

wherein the first integral sign refers as always to the domain of the
group of variables x.> Assuming (28) to be fulfilled and expansion
(27) to exist—which statements are proved by Weyl for ordinary
differential equations—the definition of the ‘‘ coefficient functions ™
from (29) is almost as obvious as the well-known definition of the
Fourier coefficients.

The most important and difficult task in any concrete case is
the carrying out of the normalisation of u(x, K), ¢.e. the finding of
that function of £ by which we have to multiply the (as yet not
normalised) proper solution of the continuous spectrum, in order that
condition (28) may be satisfied. The above-quoted works of Herr
Weyl contain very valuable guidance for this practical task, and also

1 H. Weyl, Math. Ann. 68, p. 220, 1910; Gdtt. Nachr. 1910. Cf. also E. Hilb,
Sitz.-Ber. d. Physik. Mediz. Soc. leangen, 43 p. 68, 1911; Math. Ann. 71, p. 76,
1911. 1 have to thank Herr Weyl not only for these references but also for very
valuable oral instruction in these not very simple matters.

2 T have to thank Herr Fues for this exposition.

3 As Herr E. Fues informs ine, we can very oftecn omit the limiting process in
practice and write u(§, E) for the inner integral, viz. always, when ﬁ)(f) [ (&)u(t, E)dE
exists.

(D 894) 1
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some worked-out examples. An example from atomic dynamics on
the intensities of band spectra is worked out by Herr Fues in a paper
appearing in the present issue of Annalen der Physik.

Let us apply this to our problem, ¢.e. to the solution of the pair
of equations (13) for the amplitudes w.. of the perturbed vibrations,
where we postulate as usual that the one excited free vibration, u,
belongs to the discrete point-spectrum. We develop the right-hand
side of (13) according to the scheme (27) thus,

11'77'2 47 § .
(30) I A(x)u{x) = VIR i (Z) + hzf u(z, B)a'(E)IE,
in which ¢, is given by (15 ), and o'4(E) from (29) by

- , . 1 E+A o "
(15" o' E) =111n Afp EYA(E)ur(€) /r w(g, B )E'" . d§.

If we imagine expfa,ncuon (30) put into (13), and then expand also the
desired solution w (#) similarly in terms of the proper solutions w.(x)
and u(z, E), and notice that for the last-named functions the left side
of (13) takes the value

2
6};( 0 1w — Ep)un(x)

or

2
§}§2—(Ek 1-hv - E)u(z, E),

then by “ comparison of coefficients ”” we obtain as the generalisation

of (14)

, & dwnw) (P @Bz, B) o
) w@=3 I p et Bk P
The further procedure is completely analogous to that of § 2

Finally, we get as additional term for (23)

, P (Ey—E)a'(E E
(28) +2 cos 2mt[dbp(@)Mpuye) [ (P ELkENE Dy

a ( o) it

Here, perhaps, we may not always change the order of integration with-
out further examination, because the integral with respect to ¢ may pos-
sibly not converge. However, we can—as an intuitive makeshift for a
strict passage to the limit, which may be dispensed with here—decompose

' b
the integral / into many small parts, each having a range A, which is

sufficiently small to allow us to regard all the functions of B in
question as constant in each part, with the exception of u(z, E), for
we know from the general theory that its integral cannot be obtained
through such a fixed partition, which is independent of £. We can
then take the remaining functions out of the partial integrals, and as
additional term for the dipole moment (23) of the secondary radiation,
obtain finally exactly the following,
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(E F[, a,,(E Bk(E

(23”) 2F cos 2mvt A _(—IJ-_IP)Z by P’y dE

where

@) at)=lin A [o@aOue. [ we man it
(19" —hm A/P (&)un(é) f u(, E")AE' . d¢

(please note the complcte analogy with the formulae with the same
numbers but without the dashes in § 2).

The preceding sketch of the calculation is of course only a general
outline, given merely to show that the much-discussed influence of the
continuous spectrum on dispersion, which experiment! appears to
indicate as existing, is required by the present theory exactly in the
form expected, and to outline the way in which the calculation of the
problem is to be tackled.

§ 4. Discussion of the Resonance Case

Up till now we have always assumed that the frequency v of the
light wave does not agree with any of the emission frequencies that
have to be considered. We now assume that, say,

(31) h=FE,-E>0,

and we revert, moreover, to the limiting conditions of § 2 for the sake
of simplicity (simple, discrete proper values, one single free vibration
ug excited). In the pair of equations (13), the proper value parameter
then takes the values

\J

E,
32 B+ B, FE {
( ) " e ZEI» En;
t.e. for the upper sign there appears a proper value, namely, F,. The
two cases are possible. Firstly, the right side of equation (13)
multiplied by p(x), may be orthogonal to the proper function wu,(x)
corresponding to E,, i.e. we have

(33) / A(@)ur(@)tn(@)p(@)de = a'gn =0,

which means, physically, that if u; and w, exist together as free
vibrations they will give rise to no spontaneous emission or to one
which is polarised perpendicularly to the direction of polarisation
of the incident light. In this case the critical equation (13) also again
possesses a solution, which now, as before, is given by (14), in which
the catastrophic term vanishes. This means physically—in the old
phraseology —that a ‘“ forbidden transition” cannot be stimulated
through resonance, or that a ‘‘ transition ”’, even if not forbidden,

1 K. F. Herzfeld and K. L. Wolf, Ann. d. Phys. 76, p. 71, 567, 1925 ; H. Kollmann
and H. Mark, Die Nw. 14, p. 648, 1926,
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cannot be caused by light which is vibrating perpendicularly to
the direction of polarisation of that light which would be emitted
by the “ spontaneous transition .

Otherwise, secondly, (33) is not fulfilled. Then the critical equa-
tion possesses mo solution. Statement (10), which assumes a
vibration which differs very little—by quantities of the order of the
light amplitude F—from the originally existing free vibration, and
is the most general possible under this assumption, thus does not then
lead to the goal. No solution, therefore, exists which only differs
by quantities of the order of F from the original free vibration. The
incident light has thus a varying influence on the state of the system,
which bears mno relation to the magnitude of the lght amplitude.
What influence ? We can judge this, still without further calculation,
if we start out from the case where the resonance condition (31) is
not exactly but only approximately fulfilled. Then we see from
(16) that w,(z) is excited in unusually strong forced vibrations,
on account of the small denominator, and that—not less important—
the frequency of these forced vibrations approaches the natural
proper frequency E,/h of the proper vibration u,. (All this is, indeed,
very similar to, yet in a way of its own different from, the resonance
phenomena encountered elsewhere ; otherwise I would not discuss it
so minutely.)

In a gradual approach to the critical frequency, the proper
vibration u,, formerly not excited, whose possible existence is
responsible for the crisis, is stimulated to a stronger and stronger
degree, and with a frequency more and more closely approaching
its own proper frequency. In contradistinction to ordinary resonance
phenomena there comes a point, and that even before the critical
frequency is reached, where our solution does not represent the
circumstances correctly any longer, even under the assumption that
our obviously “ undamped’ wave postulation is strictly correct.
For we have in fact regarded the forced vibration w as small com-
pared with the existing free vibration and neglected a squared term
(in equation (11)).

I believe that the present discussion has already shown, with
sufficient clearness, that in the resonance case the theory will actually
give the result it ought to give, in order to agree with Wood’s
resonance phenomenon : an increase of the proper vibration w,, which
causes the crisis, to a finite magnitude comparable with that of the
originally existing u;, from which, of course, *“ spontaneous emission
of the spectral line (wy, u,) results. I do not wish, however, to
attempt to work out the calculation of the resonance case fully
here, because the result would be of little value, so long as the
reaction of the emitted radiation on the emitting system is not
taken into account. Such a reaction must exist, not only because
there is no ground at all for differentiating on principle between the
light wave which is incident from outside, and that which is emitted
by the system itself, but also because otherwise, if several proper
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vibrations were simultaneously excited in a system left to itself, the
spontaneous emission would continue indefinitely. This required back-
coupling must act so that in this case, along with the light emission,
the higher proper vibrations gradually die down, and, finally, the
fundamental vibration, corresponding to the normal state of the system,
alone remains. The back-coupling is evidently exactly analogous to

2
the reaction of radiation (32—;;631')) in the classical electron theory.

This analogy also allays the increasing apprehension caused by the
previous neglect of this back-coupling. The influence of the relevant
term (probably no longer linear) in the wave equation will generally be
small, just as in the electron the back pressure of radiation is generally
very small compared with the force of inertia and the external field
strength. In the resonance case, however—just as in the electron
theory—the coupling with the proper light wave will be of the same
order as that with the incident wave, and must be taken into account,
if the ““equilibrium ” between the different proper vibrations, which
sets in for the given irradiation, is to be correctly computed.

Let it be expressly remarked, however, that the back-coupling term
18 not necessary for averting a resonance catastrophe! Such can never
occur in any circumstances, because according to the theorem of the
persistence of mormalisation, proved below in § 7, the configuration
space integral of i always remains normalised to the same value,
even under the influence of arbitrary external forces—and indeed
quite automatically, as a consequence of the wave equation (4").
The amplitudes of the y-vibrations, therefore, cannot grow indefinitely ;
they have, “on the average”, always the same value. If oie
proper vibration waxes, then another must, therefore, wane.

§ 5. Generalisation for an Arbitrary Perturbation

If an arbitrary perturbation is in question as was assumed in
equation (5) at the beginning of § 2, then we shall expand the per-
turbation energy 7(z,t) as a Fourier series or Fourier integral in terms
of the time. The terms of this expansion have, then, the form (6)
of the perturbation potential of a light wave. We see immediately
that on the right-hand side of equation (11) we then simply get two
series (or, possibly, integrals) of imaginary powers of e, instead of
merely two terms. If none of the exciting frequencies coincide
with a critical frequency, we get the solution in exactly the same way
as described in § 2, but, naturally, as Fourier series (or possibly Fourier
integrals) of the time. It serves no purpose to write down the formal
expansions here, and a more exact working out of separate problems
lies outside the scope of the present paper. Yet an important point,
already touched upon in § 3, must be mentioned.

Among the critical frequencies of equation (13), the frequency
v=0, from Ey— E;=0, also generally figures. For in this case also one
proper value, namely, E,, appears on the left side as proper value
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parameter. 'Thus, if the frequency 0, ¢.e. a term independent of the
time, occurs in the Fourier expansion of the perturbation function
r(z, t), we cannot reach our goal by exactly the earlier method. We easily
see, however, how it must be modified, for the case of a time-constant
perturbation is known from previous work (cf. Part 111.). We have
then to consider, at the same time, a small alteration and possibly
a splitting up of the proper value or values of the excited free
vibrations, ¢.e. in the indices of the powers of e in the first term on
the right hand of equation (10) we have to replace E; by Ej plus a
small constant, the perturbation of the proper value. Exactly as
described in Part 111., § 1 and § 2, this perturbation is defined by
the postulation that the right side of the critical Fourier component
of our equation (13) is to be orthogonal to w; (or possibly to all the
proper functions belonging to Ej).

The number of special problems, which fall under the question
formulated in the present paragraph,is extraordinarily great. By super-
posing the perturbations due to a constant electric or magnetic field
and a light wave, we obtain magnetic and electric double refraction,
and magnetic rotation of the plane of polarisation. Resonance
radiation in a magnetic field also comes under this heading, but for
this purpose we must first obtain an exact solution for the resonance
case discussed in § 4. Further, we can treat the action of an a-particle
or electron flying past the atom? in this way, if the encounter is not
too close for the perturbation of each of the two systems to be
calculable from the undisturbed motion of the other. All these
questions are mere matters of calculation as soon as the proper
values and functions of the unperturbed systems are known. It is,
therefore, to be hoped that we will succeed in defining these functions,
at least approximately, for heavier atoms also, in analogy with the
approximate definition of the Bohr electronic orbits which belong to
different types of terms.

§ 6. Relativistic-magnetic Generalisation of the Fundamental Equations

As an appendix to the physical problems just mentioned, in which
the magnetic field, which has hitherto been completely ignored in this
series of papers, plays an important part, I would like to give,
briefly, the probable relativistic-magnetic generalisation of the basic
equations (4”), although I can only do this meantime for the one
electron problem, and only with the greatest possible reserve—the latter
for two reasons. Firstly, the generalisation is provisionally based on
a purely formal analogy. Secondly, as was mentioned in Part I.,
though it does formally lead in the Kepler problem to Sommerfeld’s
fine-structure formula with, in fact, the ‘‘ half-integral ” azimuthal
and radial quantum, which is generally regarded as correct to-day,

1 A very interesting and successful attempt to compare the action of flying
charged particles with the action of light waves, throu%h a Fourier decomposition of
their field, is to be found in a paper by E. Fermi, Ztschr. f. Phys. 29, p. 316, 1924.
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nevertheless there is still lacking the supplement, which is necessary
to secure numerically correct diagrams of the splitting up of the
hydrogen lines, and which is given in Bohr’s theory by Goudsmit
and Uhlenbeck’s electronic spin.

The Hamilton-Jacobi partial differential equation for the
Lorentzian electron can readily be written :

|53 wor) - (G e - (5 )

(34) oW ey \?

l —( % ~E\’lz> - m2c?=0.
Here ¢, m, ¢ are the charge and mass of the electron, and the velocity
of light; V, 9 are the electro-magnetic potentials of the external
electro-magnetic field at the position of the electron, and W is the
action function.

From the classical (relativistic) equation (34) T am now attempting
to derive the wave equation for the electron, by the following purely
formal procedure, which, we can verify easily, will lead to equations
(4", if it is applied to the Ifamiltonian equation of a particle
moving in an arbitrary field of force in ordinary (non-relativistic)
mechanics.  After the squaring, in equation (34), I replace the quantities

oW oW oW oW
ot a0’ By, 0z’

(35) by the respective operators
4 7ﬁ - a >I_ __},%,. a do o ]I_I.. a e 71%.. .aA
Fomot T 2mor T2mdy T 2mi o

The double linear operator, so obtained, is applied to a wave function
¢ and the result put equal to zero, thus:

1 0% __4mie/V
@0 v gt (L 3 Wl )

477.8<V2 9 - m__c_)¢l 0.

(The symbols y? and grad have here their elementary three-dimensional
Euclidean meaning.) The pair of equations (36) would be the possible
relativistic-magnetic generalisation of (4") for the case of a single
electron, and should likewise be understood to mean that the complex
wave function has to satisfy either the one or the other equation.
From (36) the fine structure formula of Sommerfeld for the hydro-
gen atom may be obtained by exactly the same method as is described
m Part I., and also we may derive (neglecting the term in ?2) the
normal Zeeman effect as well as the well-known selection and polarisa-
tion rules and intensity formulae. They follow from the integral
relations between Legendre functions introduced at the end of Part III.
For the reasons given in the first section of this paragraph, I
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withhold the detailed reproduction of these calculations meantime,
and also in the following final paragraph refer to the ¢ classical ”’, and
not to the still incomplete relativistic-magnetic version of the theory.

§ 7. On the Physical Significance of the Field Scalar

The heuristic hypothesis of the electro-dynamical meaning of the
field scalar s, previously employed in the one-electron problem, was
extended off-hand to an arbitrary system of charged particles in § 2,
and there a more exhaustive description of the procedure was promised.
We had calculated the density of electricity at an arbitrary point in
space as follows. We selected one particle, kept the trio of co-ordinates
that describes s position in ordinary mechanics fixed ; integrated
Jib over all the rest of the co-ordinates of the system and multiplied
the result by a certain constant, the ‘ charge ”” of the selected particle ;
we did a similar thing for each particle (trio of co-ordinates), in each
case giving the selected particle the same position, namely, the
position of that point of space at which we desired to know the electric
density. The latter is equal to the algebraic sum of the partial results.

This rule is now equivalent to the following conception, which
allows the true meaning of ¢ to stand out more clearly. i is a
kind of weight-function in the system’s configuration space. The
wave-mechanical configuration of the system is a superposition of
many, strictly speaking of all, point-mechanical configurations kine-
matically possible. Thus, each point-mechanical configuration con-
tributes to the true wave-mechanical configuration with a certain
weight, which is given precisely by yuf. If we like paradoxes, we may
say that the system exists, as it were, simultaneously in all the
positions kinematically imaginable, but not ‘“equally strongly ” in
all. In macroscopic motions, the weight-function is practically con-
centrated in a small region of positions, which are practically
indistinguishable. The centre of gravity of this region in configuration
space travels over distances which are macroscopically perceptible.
In problems of microscopic motions, we are in any case interested
also, and in certain cases even mainly, in the varying distribution
over the region.

This new interpretation may shock us at first glance, since we
have often previously spoken in such an intuitive concrete way of the
“-vibrations ”’ as though of something quite real. But there is
something tangibly real behind the present conception also, namely, the
very real electrodynamically effective fluctuations of the electric space-
density. The y-function is to do no more and no less than permit of
the totality of these fluctuations being mastered and surveyed mathe-
matically by a single partial differential equation. We have repeatedly
called attention ! to the fact that the y-function itself cannot and may
not be interpreted directly in termsof three-dimensional space—however
much the one-electron problem tends to mislead us on this point—

1 End of Part IL (p. 39); paper on Heisenberg’s quantum mechanics (p. 60).
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because it is in general a function in configuration space, not real
space.

Concerning such a weight-function in the above sense, we would
wish its integral over the whole configuration space to remain constantly
normalised to the same unchanging value, preferably to unity. We
can easily verify that this is necessary if the total charge of the system
is to remain constant on the above definitions. Even for non-
conservative systems, this condition must obviously be postulated.
For, naturally, the charge of a system is not to be altered when, e.g., a
light wave falls on it, continues for a certain length of time, and then
ccases. (N.B.—This is also valid for ionisation processes. A dis-
rupted particle is still to be included in the system, until the separation
is also logically—by decomposition of configuration space—completed.)

The question now arises as to whether the postulated persistence
of normalisation is actually guarahteed by equations (4”), to which
i is subject. If this were not the case, our whole conception would
practically break down. Fortunately, it is the case. lLet us form

(37) ¢ [adpia [(42 +3 o

Now, i satisfies one of the two equations (4”), and ¢ the other.
Therefore, apart from a multiplicative constant, this integral becomes

(38) [Whv2 - vppdc -2 [ (IR - Ry*T)pis,
where for the moment we put
Yp=R+iJ.

According to Green’s theorem, integral (38) vanishes identically ; the
sole necessary condition that functions R and J must satisfy for this—
vanishing in sufficient degree at infinity—means physically nothing
more than that the system under consideration should practically be
confined to a finite region.

We can put this in a somewhat different way, by not immediately
integrating over the whole configuration space, but by merely changing
the time-derivative of the weight-function into a divergence by
Green’s transformation. Through this we get an insight into the
question of the flow of the weight-function, and thus of electricity.
The two equations

(4" O _ h(_, 8
o iV
oF k., 8
R (U g

are multiplied by py and py respectively, and added. Hence
0 7 o
(39) 5P = o (V% - Uy,

A
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To carry out @n extenso the transformation of the right-hand side,
we must remember the explicit form of our many-dimensional, non-
Euclidean, Laplacian operator:?!

(40) pPVi=2 azk[_pT oy <(11, g:)]

k
By a small transformation we readily obtain

0 h «0f o o
(41) 8t(P‘/“Z) “4m % aqk[P'I'TPk <ql’ aq) - P')Z‘Tm (Ql, aq):l'

The right-hand side appears as the divergence of a many-dimensional
real vector, which is evidently to be interpreted as the current density
of the weight-function in configuration space. KEquation (41) is the
continuity equation of the weight-function.

From it we can obtain the equation of continuity of electricity, and,
indeed, a separate equation of this sort is valid for the charge density
“ originating from each separate particle”’. Let us fix on the ath
particle, say. Let its ‘‘ charge” be ¢,, its mass m,, and let its co-
ordinate space be described by Cartesians =z, 4., 2., for the sake of
simplicity. We denote the product of the differentials of the remaining
co-ordinates shortly by da’. Over the latter, we integrate equation
(41), keeping #,, ¥, 24, fired. As the result, all terms except three
disappear from the right-hand side, and we obtain

sl eofwite |- :1;}%,{ ) [(F52 - gf)‘”]
(42) + ag; [ / ("Zaai - ¢§i>dx] +... }
hee iy, | [ rade - grad Pas |

" 4mim,

In this equation, div and grad have the usual three-dimensional
Euclidean meaning, and z,, ¥,, 2, are to be interpreted as Cartesian
co-ordinates of real space. The equation is the continuity equation
of that charge density which ‘ originates from the ath particle”. If
we form all the others in an analogous fashion, and add them together,
we obtain the total equation of continuity. Of course, we must
emphasize that the interpretation of the integrals on the right-hand side
as components of the current denmsity, is, as in all such cases, not
absolutely compulsory, because a divergence-free vector could be added
thereto.

To give an example, in the conservative one-electron problem,
if 4 is given by

1 Cf. paper on Heisenberg’s theory, equation (31). The quantity there denoted
by A,—1% is our * density function” p(z) (e.g. 2 sin 6 in spherical polars). 7T is the
kinetic energy as function of the position co-ordinates and momenta, the suffix at 7'
denoting differentiation with respect to a momentum. In equations (31) and (32),

loc. cit., unfortunately by error the suffix k is used twice, once for the summation and
then also as a representative suffix in the argument of the functions.
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(43) Y =Zcpue? et % (cy, 0; real constants),
3
we get for the current density J

(44) J= 22:;;—1 (El) cxei(wg grad ug —wy, grad w) . sin [2a(ve — wi)t + 0, — 0]
We see, and this is valid for conservative systems generally, that,
if only a single proper vibration is excited, the current components
disappear and the distribution of electricity is constant in time. The
latter is also immediately evident from the fact that b becomes con-
stant with respect to the time. This is still the case even when several
proper vibrations are excited, if they all belong to the same proper
value. On the other hand, the current density then no longer needs
to vanish, but there may be present, and generally is, a stationary
current distribution. Since the one or the other occurs in the unper-
turbed normal state at any rate, we may in a certain sense speak of
a return to clectrostatic and magnetostatic atomic models. In this way
the lack of radiation in the normal state would, indeed, find a
startingly simple explanation.

I hope and believe that the present statements will prove useful
in the elucidation of the magnetic properties of atoms and molecules,
and further for explaining the flow of electricity in solid bodies.

Meantime, there is no doubt a certain crudeness in the use of a com-
plex wave function. If it were unavoidable ¢n principle, and not merely
a facilitation of the calculation, this would mean that there are
in principle two wave functions, which must be used together in order
to obtain information on the state of the system. This somewhat
unacceptable inference admits, I believe, of the very much more
congenial interpretation that the state of the system is given by
a real function and its time-derivative. Our inability to give more
accurate information about this is intimately connected with the fact
that, in the pair of equations (4”), we have before us only the substitute
—extraordinarily convenient for the calculation, to be sure—for a real
wave equation of probably the fourth order, which, however, I have
not succeeded in forming for the non-conservative case.

Ziirich, Physical Institute of the University.
(Received June 23, 1926.)



The Compton Effect

(Annalen der Physik (4), vol. 82, 1927)

It is well known that according to the wave theory of light all changes
in the frequency and in the wave-normal can be predicted by means of
very simple and general considerations with respect to phase, without
going into any details of the process. 1 mean considerations of the
following kind :

Let the xy-plane be the surface of separation of two media with
refractive indices n (for z>0) and »’ (for z<0), and let a wave of light
with the phase

n

ez By +y2) |

Qv

fall on it from the positive z-direction. If we assign to the refracted
wave the phase

’

21rv’[t —% (a'z+B'y+y'2)+8 ],
and stipulate that for z=0 the phase difference between the waves is

to be constant, v.e. independent of z, ¥, ¢, we obtain
, n'a =na, n'B =np,

v.e. Snell’s law of refraction. The reasoning is so general that it holds
without alteration, e.g. for crystals, and is immediately transferable to
the case of a moving surface of separation. A more detailed investiga-
tion of the electromagnetic process only becomes necessary if we are
also concerned with the intensities (Fresnel’s formulae of reflection).

If now we are right in supposing that in de Broglie’s waves we
have at our disposal a means (ranking on a level with wave optics)
for mastering those processes which have previously been thought of
exclusively as motions of corpuscles, it is to be expected, nay, even
demanded, that we should be able, by means of quite simple phase
considerations of the kind mentioned above, to explain the connection
between the changes in direction and frequency of the ether wave
which occur in the Compton effect and the change of velocity of the
electron. For according to de Broglie’s idea the latter also can be
described as the change of direction and frequency of a wave, namely,

124
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of a de Broglie wave. A more detailed investigation of the wave
mechanics of the process, such as W. Gordon ! has recently carried
out with complete success, is unnecessary, except for the determination
of the intensities. As this is rather lengthy and involved, the simple
intuitive treatment given below, which gives everything but the
intensity, may be welcome.

We start from a result of classical optics. ““If in a transparent,
homogeneous, and isotropic medium, the refractive index of which
depends on the density, a ray of light of wave-length A crosses a wave
of compression (sound wave) of wave-length A, then (as L. Brillouin ?
has shown by purely classical reasoning) the ray of light is in part
regularly reflected from the planes of the sound wave, provided that
the two wave-lengths and the glancing angle 8 are connected by Bragg’s
relation (well known in the theory of X-ray reflection)

(1) 2A sin 6 =2

for first-order reflection (=A, not =kA). This approximation holds
good, provided we can regard the velocity of light as very great com-
pared to the velocity of sound. More accurately, the circumstances
are the same as in the case of a moving mirror : the angle of reflection
is not exactly equal to the angle of incidence, the ray of light undergoes
a Doppler displacement, and equation (1) also must be corrected as
in the case of a moving crystal.”

These sentences are taken from an earlier paper,® in which it is
satisfactorily proved that Brillouin’s result can also be obtained on
the hypothesis that exchanges of energy and momentum between the
two waves proceed by quanta. At that time we were all of the
opinion that our whole interpretation of Nature must ultimately rest
on such quantum balances, and we rejoiced whenever a trustworthy
classical result could be transferred from the old foundation to the
new without any trouble. Now we are going in the reverse direction,
s0 to speak. We show that the wave mechanics can provide for the
Compton relationships an interpretation which is closely related to
the above-mentioned result of Brillouin’s, and which is just as simple
as the quantum considerations of momentum-energy.

A plane sine wave
@) ,’[,~e2;a”["”“’£'\‘ac 0 a1y yz)]’

where a?+B2+92=1, vy=my?h,

(mqy=rest-mass of the electron, & =Planck’s constant, ¢ = velocity
of light)

1 W. Gordon, Ztschr. f. Phys. 40, p. 117, 1926. Herr Gordon kindly let me sce
the manuscript of his paper, and hence I was led to the following simple way of
looking at the matter, which is, in a nutshell, the basis of Herr Gordon’s own
treatment.

2 L. Brillouin, Ann. d. Phys. 17, p. 88, 1923.

3 E. Schrodinger, Physik. Ztschr. 26, p. 89, 1924,
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for space with no field, is a solution of the relativistic y-wave
equation which has recently been proposed on many sides,’

Vi - - T =0,

According to de Broglie, the above solution belongs to an electron
moving with energy Av in the direction a, 8, y. Hence we deduce in
a well-known way that

v hVvE—yd hV/vE —py? 8 h/vE —y2

c y c . a, P P P <Y,
is the four-vector * energy-momentum ** of the corresponding electron.
From the wave standpoint we will call it the four-vector ““ propaga-
tion ’, and we shall apply this expression to the coefficients of ¢, -z,
-y, -2, in the phase (dropping the factor 2m/k) of a completely
arbitrary plane sine wave, be it a Y-wave, an ether wave, or any other.
* Propagation > is therefore a purely wave-kinematical idea; its
components are

ha hB hy

wave length’ wave length’  wave length’
where a, B, v are the direction cosines of the normal to the wave.
For an ether wave these quantities coincide with the quantum theory
values of energy and momentum. These references to quantum
magnitudes, however, are only for the purpose of making it sub-
sequently easier to 1dent1fy our results with Compton’s : we shall work
with the purely wave-kinematic idea of propagation (3). By the
three-vector propagation, we mean, of course, the projection in space,
1.e. the vector (3) with the first component omitted.

According to the hypothesis of wave mechanics, which up to now
has always proved trustworthy, it is not the y-function itself but the
square of its absolute value that is given a physical meaning, namely,
density of electricity.? A single -wave of type (2) therefore produces
a density distribution which is constant both in space and time. If,
however, we superpose two such waves, the constants of the second
being v', o', B', ', we easily see that a “wave of electrical density ”
arises from their combination, with a propagation vector which is
the vector difference of the propagation vectors of the two constituent
Y-waves. If we denote the latter vectors symbolically by 4, 4, that
of the density wave is 3

4) D=4-4"
Now 1t 1s this density wave that takes the place of the sound wave of

1 0. Klein, Ztschr. f. Phys. 37, E 895, 1926 ; E. Schrodinger, Ann. d. Phys. 81,
p- 109, 1926 ; V. Fock, Ztschr. f. Phys. 38, p. 242, 1926 ; Th. de Donder and H. van
den Dungen, Compt. rend., July 5, 1926 ; L. de Broglie, Compt. rend., July 26, 1926 ;
J. Kudar, Ann. d. Phys. 81, p. 632, 1926 ; W. Gordon, loc. cit.

2 The relativistic refinement of this statement (W. Gordon, loc. cit.) does not
affect our case at all.

3 The sign is of small importance, as changing it merely causes the y-waves to
change places.

3) ZA . frequency,
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Brillouin’s paper. If we assume that a light wave is reflected from
it as from a moving mirror, subject, however, to fulfilment of Bragg’s
law, then, as we shall show, our four waves, namely, the two -waves
A and A’ and the incident and reflected light waves, stand exaetly
in the Compton relationship. The difference between this case and
Brillouin’s case of reflection from a sound wave is quantitative only,
inasmuch as the velocity of our density wave D is not in general small
compared with the velocity of
light ; on the contrary, arbi-
trary values up to the velocity
of light may occur (but, as is
casily verified, never greater
than the velocity of light).

The proof of our assertion
is casily produced. In fact we
do not really require to in-
vestigate reflection at a moving
mirror. As all the four waves,
and of course their propaga-
tion vectors also, are invariant
with respect to Lorentz trans-
formation, we can bring the Fro. 1,
density wave to rest by means
of such a transformation. The first component (the time component)
of its propagation vector then vanishes. Moreover, the frequency
(and wave length) of the light wave are not changed during the
reflection in this case, 7.e. the time component of s propagation
vector remains unaltered on reflection. Finally, Bragg’s relationship
holds exactly in the form (1), if A denotes the wave length of the
light wave, A that of the density wave, and 8 the glancing angle. It
can be put in the form
(5) 2? sin 0 = 1];,
which is illustrated in the accompanying figure (Fig. 1), in which the
equality of the angles of incidence and reflection is also taken into
account.

Equation (b) therefore cxpresses the fact that the three-vector of
the incident light wave and the three-vector of D arc together equal
to the three-vector of the reflected light wave. Moreover, according
to what has been said above, a similar relationship holds for the time
components also : for D, the time component is zero, and for the light
wave it is wnaltered on reflection. If we call the propagation four-
vectors for the incident and reflected light waves L and L’ respect-
ively, we can sum up all this in the single four-vector equation *

(6) L+D=L,

1 Tho sign of D in (6) is of small importance, as changing it merely causes the
light waves to change places.
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which must now hold for an arbitrary four-dimensional system of
co-ordinates. Combined with (4), this equation gives

(7 L+A=L+4".

If we bear in mind the significance of the components of L, L' from
the light quantum point of view, and of those of A4, A" according
to de Broglic’s correlation of i-waves and clectrons, equation (7)
agrees exactly with the statement of Compton’s energy-momentum
theory of the Compton eftect.

It is quite interesting to notice the complete reciprocity between the
Y-waves on the one hand and the light waves on the other. The
phenomenon may equally well be regarded as a Bragg’s reflection of
a Y-wave at the system of interference fringes produced by two light

Fia.

(&4
.

waves crossing one another. In the special system of co-ordinates
used above, this system is at rest and is identical with O. Wiener’s
system of stationary light waves. The relationships (4) and (6)
express the fact that the system of interference fringes and the density
wave coincide, both having the propagation vector D. The special
system of co-ordinates is just the one which W. Pauli?® formerly found
the most convenient for the investigation of the Compton effect.

Fig. 2 is an attempt to represent the relationships between the
four wave fronts penetrating through each other and the common
stationary wave (in dotted lines) in the special space-time system.?
To avoid confusing the diagram, the two light wave fronts are drawn

1 'W. Pauli, jun., Ztschr. f. Phys. 18, p. 272, 1923.

2 Note added to the English edition :

Professor Ehrenfest has drawn my attention to the fact that unfortunately Fig. 2
is wrong. The pair of waves (4, 4’) ought to be equal to (L’, L) in every respect, ¢.e.
in wave length and dircction also—the wave normal of 4’ being parallel to that of L,
and the wave normal of 4 to that of L',
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in the left half only, and the two ¢-wave fronts in the right half only.
The arrows are normal to the wave fronts and indicate their directions
of propagation. Their length has no meaning. The reader should
imagine them pushed together into the middle of the figure by parallel
translation, so that the feathers of L’ and A’ and the heads of L and
4 all coincide in one point. It is easily deduced from the figure that
Bragg’s equation (1) holds for either pair of waves (L, L") and (4, 4’),
if we regard the stationary wave as the ““ crystal ”.  We may therefore
say :
The direction and frequency laws of the Compton effect are completely
equivalent to the statement that the pair of light waves and the pair of
Y-waves concerned stand in the Bragg relationship for reflection of the
Jirst order (generalised for a moving crystal) to one and the same *“ space
lattice . The space lattice considered can at the outset have an arbitrary
position and an arbitrary distance between the plane layers, and a velocity
of translation less than that of light but otherwise arbitrary.

I should now like to deal with one objection to the principle of the
method. It might be said : yes, but in the Compton effect the original
data are one light wave, and one electron moving in a specified way,
i.e. one Y-wave, as we say : now wherever does the second suitably
chosen y-wave come from, which, together with the given one, is to
form a suitable *‘ Bragg’s mirror ”’ for the given light wave ? The
reply is that such simple considerations of phase as we have employed
here are of course absolutely inadequate for the answering of such
questions. By means of these simple considerations we investigate
the Compton phenomenon in « steady state, so to speak, in which the
primary wave of one kind is continually transformed into a secondary
wave by reflection at the system of interference fringes of the other
kind, and vice versa. This is just how we proceed in analogous dis-
cussions in optics, even when we study the subject much more accurately
by means of a detailed theory. There also we do not in general study
the first appearance, e.g. of a reflected and a refracted wave at the
head of the primary wave train, but we make an assumption not merely
for the incident wave alone but likewise for all the other waves whose
appearance can be foreseen; and by this assumption we seck to
represent a stationary state which will satisfy all the conditions of the
problem.

Zirich, Physical Institute of the University.
(Received November 30, 1926.)
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The Energy-Momentum Theorem for
Material Waves

(Annalen der Physik (4), vol. 82, 1927)

Ture Hamiltonian principle, from which the exact relativistic differential
equation for de Broglie’s waves can be obtained,! appears to justify
completely the hopes which 1 had set upon an intimate blending
together of wave mechanics and classical electrodynamics.2  If to the
integrand (the ‘‘ Lagrangian function ”) we add £? - (52, the well-
known Lagrangian function of the electromagnetic field when no
charges are present, then by varying the potentials as well as the
Y-function we obtain simultaneously the four wave equations for the
former with the components of the four-current on the right-hand
sides, 7.e. the complete electrodynamics. This is due to the fact,
first noticed by Gordon, loc. cit., that differentiation of the Lagrangian
function for de Broglie’s waves with respect to a component of potential
gives the corresponding component of the four-current. A most
important further result is the energy-momentum theorem for the whole
field, from which the contribution of the charges, i.e. of the y)-function,
to the energy-momentum tensor may easily be deduced. It is quite
clear to me that all this must somehow be included in the very general
theories proposed by O. Klein * and de Donder.* It does not seem
superfluous, however, to set forth these connections in as simple a
form as possible without referring to the theory of gravitation or the
interesting fifth dimension, especially if we bear in mind the very
considerable gulf which still yawns between experiment and this
beautiful and self-contained theory of the field (see the end of this
paper).

We apply the wave equation and Hamilton’s principle in the form
given by Gordon (loc. cit.). The former (always summing from 1 to
4 for indices which occur twice) is as follows :

1 0. Klein, Ztschr. f. Phys. 37, p. 895, 1926 ; V. Fock, ibid. 38, p. 242, 1926 ; J.
Kudar, Ann. d. Phys. 81, p. 632, 1926; W. Gordon, Ztschr. f. Phys. 40, p. 117, 1926,

2 Ann. d. Phys. 79, p. 754, 1926 (p. 60 above).

3 Loc. cit.

4 Th. de Donder and H. van den Dungen, Compt. rend., July 5, 1926.
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2
g [ +)(ag, +8) -2 Jo =0,

where
Ty, Loy T3 =2, Y, %5 x4=’l:ct M
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@ k= h?

9, V, are the potentials ; e, my, ¢, h, the familiar universal constants ;
t=4/~1. It must specially be emphasized that the relationship to
actual reality is mot obliterated by the introduction of four-vectors
with an imaginary fourth component. This procedure is merely a
formal device of calculation, used in order that we may not be obliged
to insert the fourth term specially in all four-sums on account of its
different sign. The passage to the conjugate complex quantity there-
fore only affects © when it occurs explicitly, and the -function.
According to Gordon (loc. cit.), (1) can be derived from a four-
dimensional Hamiltonian integral with the (real) Lagrangian function

(3) Lin = (o + i) (b ~ ihaih) + K3,

where the bar denotes the conjugate complex quantity, and we have
put for brevity

The index a must therefore take effect after the bar (see above). In
the formation of the variational derivatives, i and ¢ are to be varied
independently, as Gordon has observed. It is easy to see that this
comes to the same thing as varying the real and imaginary parts of ¢
independently (which would really be the rational procedure). Hence
one of the variational derivatives is

0 (0L,\ ©OL,
®) calag) 5
which is identical with (1) ; the other gives nothing new. By multiply-
ing (5) by i, we easily obtain

0 ( 70Ly, aJm oL,,
®) e P ) =i+ B =

the latter equality follows from the fact that L, is homogeneous and
of the first degree in the five quantities J, $.. The right-hand side is
unaltered by passage to the conjugate complex quantities ; and hence
by subtraction

M) (&%ﬁ’” Vo) -0

(D 894) K 2

=0,
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This, according to Gordon, is the equation of continuity for electricity.
We notice that
l)EBL,,, ¢8Lm 0Ly,

8
8) 3. TN
We define the four-current as follows,
oLy,
(9) Sa= —A; 3.

where A is a universal real constant to be chosen later. By the
quantities s, we mean the four quantities which in Lorentz’s theory
were given by

b .
(10) 815 S2» SSZPC> 84 =1p.

We now extend our Lagrangian function (3) in such a way that by
varying the quantities ¢, in it we obtain (as is possible, in consequence
of (9)) the laws of the clectromagnetic field. We put

_ P‘#ﬂ ;)960. aqSB ’)(ﬁ"-
(11) Le=1fws <8x 8¢};><55é; - 9x3>’
where for brevity
a o
(12) Jeg= aﬁé - 5%

From (2) and familiar formulae, we see that the quantities f have the
following meanings :

2me. Ame

Ame
f14=“" @Lx, fz4—“” @(SJ, f:u——'

2me o ch - 2770

Sos= e Dz, Sar= sQua Jiz= e Dz

’LLz 5
(13)

where (§, § represent the field in the customary units. As Lagrangian
function we now take

(14) L=Ly+L,
and obtain in a familiar way

afaB oL SB

15 =
w =
by varying ¢,. If the constant )\ is given the value
he
A =gt

the equations (15) represent the so-called second quartet of the Maxwell-

Lorentz equations, while the first quartet is identically satisfied by (12).
Using (12) and Maxwell’s subsidiary condition <g§i‘ =O>, the equa-

tions (15) become the wave equations for the potentials,
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From (15’) (together with Maxwell’s subsidiary condition), iv is
now easy to verify that

oT o _ f prSe
(16) o Sl
where
(17) Tpv=fpaf<ru“8paLe

is Maxwell’s well-known stress-energy-momentum-tensor (apart from
a universal constant). In Lorentz’s work the right-hand side of (16)
means the energy or momentum abstracted from the electrons by the
forces of the field. In virtue of (9) and the )-wave-equation (5), the
right-hand side of (16) may likewise be represented as the divergence
of a tensor, namely, of the energy-momentum-tensor of the charge (or
of the “ matter ”’). In the first place, we have

ot _ (2 2,\0Ln_oLnidy D (, 3Ln
(18) A <aa~,, - )a¢;, o4, oz, ‘ax‘,<¢%j>’

where the latter equation follows from the fact that the four-current
is free of sources (from equations (7) and (8)). Further, we note that

T 2
(19) aL _ 0Ly, 9¢, 8Lme 8Lm 8Lm O, 0Ly Otf,

=%, 7, " og Pt od, o, oz,
Since by (4), however,
"
(20) ?;il = (Lg{‘?, ete.,
p o

it is possible to transform the last two terms in (19) as is done in
integration by parts; after this transformation four terms cancel, on
account of (5), and we obtain

aL aL 0 o oL, oL,
(21) by 2 (o )

~ 04, o, o, l/l”
We subtract this from equatlon (18), and we have
_ fooSq _OLm 0Ly
[ X “m, W% <‘/;Pa¢; i w, ¢°a¢,‘>
0 0Ly, 0Ly
(22)  gas O =i = ="
354
T T ow,
where we introduce the energy-tensor of the charges or of the *“ matter ”’

(23) SPV 'pp F ‘)Z; ‘/’p a¢, 95982? - BP'-'Lm'



134 WAVE MECHANICS
From (16) and (22) we obtain

0
(24) a_x (Tptr + Spu) =0

for the combined laws of conservation of energy and momentum for
the electromagnetic field and de Broglie’s wave-field taken together.

Calculation shows that the tensor S,, is symmetrical. We easily
find the explicit expression

(25) [ SP" = SZP'/'W_"*' 'zo‘)bp + uﬁ”(‘ﬁp‘p - ¢P¢)
U +igp(hotp —potd) + 20, 8,0 Lim,

or the following one, which is more closely related to the form of L,

given in (3), B
(25,) fSPU = (‘/’p + 7:45,)(/!)(!/‘., - WSG‘L)
[ + (l/'u + 7’¢a‘/’)('pp - 7’¢p$) - SpoLm-
In contradistinction to T,,, the Laue scalar (diagonal sum) S,,
does not vanish. We easily obtain

(26) Soe= = 2L + k3f).

The complete tensor can also be represented by means of the complete
Lagrangian function in the following way, well known from similar
cases

oL o4, oL 04, oL
R T

)
ox,

Too +8pe =

(27
oL oL
+ 9%1/;, + 8—q§;¢" —8poL.

This is analogous to the representation of the Hamiltonian function
by means of the Lagrangian function in potnt mechanics.

It should be remembered that our tensor components S,, and T,
have the physical dimensions cm.~%.  Before being applied they must
be multiplied by the constant

h*c?
32m3%e?
which is of the dimensions of the square of a charge, in order that they
may physically represent energy, momentum, and stress. (N.B.
Other defects in the dimensions are to be rectified, as is known, by
means of powers of c.)

If we now ask ourselves whether this self-contained theory of the
field—apart from the provisional neglect of the electronic spin—
corresponds to reality in the way we had previously hoped for from
such theories, the question must be answered in the negative. The
examples worked out, particularly that of the H-atom, show in fact
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that we have not to insert in the wave equation (1) those potentials
which result from the potential equations (15') with the four-current
(9). On the contrary, we know that in the case of the H-atom we
have to substitute the given potentials of the nucleus and of possible
“ external 7 electromagnetic fields for the ¢,’s in (1), and solve the
equation for . The distribution of current produced by this i is
then calculated from (9), and from the distribution the potentials
produced by it are found by (15’). By adding the latter to the
potentials given in advance, we obtain those potentials which define
the external action of the atom as a whole. We thus obtain (with a
suitable normalisation of ¢, for which, it must be admitted, a proof
by the theory of the field is also wanting) the neutralisation of the
nuclear charge at greater distances on the one hand, and on the other
hand the radiation. With reference to the attempt, which it would
now be natural to make, to substitute these newly found potentials
in equation (1), and thus to calculate a * second approximation ”, it
is to be remarked that we must not on any account proceed in this
way with the neutralisation potential, as it would completely alter the
values of the terms, and hence would make many more stages of
approximation necessary. These, even if the process converges at
all, certainly do not lead to the correct hydrogen terms, much less
(in the case of nuclear charge 2) to the helium atom terms. On the
contrary, we should very probably obtain the required radiation cor-
rection ! by dealing with the radiation potentials in the way described,
if we suppose that one proper vibration is strongly excited but all the
others only very feebly.

Hence there is something which intrudes into the self-contained
system of field equations in a peculiar way. This is not yet fully
intelligible at present, but it must be considered in connection with
the two following facts :

1. The exchange of energy and momentum between the electro-
magnetic field and *“ matter ”” does not in reality take place continuously
as the expression (24) in terms of the ficld would lead us to believe.

2. In Lorentz’s theory also we have to substitute in the first
instance only the fields of the other electrons in the equations of motion
of the single electron, and not its own individual field. The reaction
of the latter has already been almost entirely taken account of as
clectromagnetic mass, wn setting up the equations of motion. The
corresponding term in equation (1) is the term with k2. The reaction
of radiation results in a second approximation from the reaction of
the electron’s own field in Lorentz’s theory also.

The question whether the solution of the difficulty is really to be
found only in the purely statistical interpretation of the field theory
which has been proposed in several quarters ? must for the present
be left unsettled. Personally I no longer regard this interpretation

1 Cf. Ann. d. Phys. 81, p. 129 et seq., 1926 (p. 116 et seq.).

2 M. Born, Ztschr. f. Phys. 38, p. 803, 1926 ; 40, p. 167, 1926 ; P. A. M. Dirac,
Proc. Roy. Soc., A, 112, p. 661, 1926 ; and W. Gordon, loc. cit.
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as a finally satisfactory one,! even if it proves useful in practice. To
me it scems to mean a renunciation, much too fundamental in prin-
ciple, of all attempt to understand the individual process.

A brighter side of the difficulty in question deserves to be mentioned.
By interrupting the completeness of the system of field equations in
her actual behaviour, Nature accommodates herself to our mathematical
powers to an astonishing extent. Even the theory of the hydrogen
atom would become immeasurably complicated from the mathematical
point of view, if the ¢,’s did not stand for given potential values in
equation (1), but if instead we had to add to them those which are
to be calculated by means of (9) and (15') from , which is itself
unknown.

Ziirich, Physical Institute of the University.
(Received December 10, 1926.)

1 Cf. Die Naturwissenschaften, 12, p. 720, 1924,



The Exchange of Energy according to
Wave Mechanics

(Annalen der Physik (4), vol. 83, 1927)

A sEries of papers which have appeared in this journal ! forms the
starting-point of the present note. Here, in fact, we shall apply the
many-dimensional form of ““ wave mechanics ”” to which these papers
are almost exclusively devoted, and which can be brought into coin-
cidence with the Heisenberg-Dirac quantum mechanics, instead of
that four- (or according to O. Klein five-) dimensional form,? which
corresponds to de Broglie’s original conception and possibly strikes
more closely at the root of the matter, but which is meanwhile only
prospective in character, because we do not yet understand how to
formulate the problem for more than one electron by means of it. I
must ask leave to develop afresh here some important matters which
have previously been expounded by others (Heisenberg, Dirac, Jordan).
For I should like to remain intelligible to those even who have not yet
made themselves familiar with the use of the new number-systems
(matrices, g-numbers) employed by those writers.?

§ 1. The Method of Variation of Constants 4

More general methods,® which are far superior for many purposes,
have since been given for the treatment of the perturbation problem

1 ¢ Quantisation as a Problem of Proper Values”, Parts I.-IV. above; hence-
forth referred to as Q. 1.-IV.

2 Q. Klein, Ztschr. f. Phys. 37, p. 895, 1926 ; W. Gordon, bid. 40, p. 117, 1926 ;
Q. IV. p. 117 above ; K. Schrédinger, Ann. d. Phys. 82, pp. 124 and 130 above, cte.

3 The difficultics which are very generally experienced may be compared with
the following. 1f someone, e.g., in a lecturo, began by expounding the old action-at-
a-distance theory of clectricity in Cartesian co-ordinates, and then introduced vector
analysis for the first time while passing to Maxwell’s theory, the listener would have
great difficulty in distinguishing between the physically new matter and the new
form. (Similarly, e.g., in P. A. M. Dirac’s paper, Proc. Roy. Soc., A, 14, p. 250, § 3,
one may easily overlook the fact that here a quite new physical hypothesis has just
been introduced, namely, a ‘ successive ’ or *‘ double ” application of the process
which Heisenberg calls *“ passage to matrices ”” and Dirac *‘ passage to g-numbers ”’,
and which I call © passage to wave-mechanics .

¢ P. A. M. Dirac, Proc. Roy. Soc., A, 112, p. 674, 1926.

5 Cf. especially M. Born, Ztschr. f. Phys. 40, p. 172, 1926.

137
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solved in Q. III. (§§ 1 and 2). We consider a conservative system ;
let its wave equation (Q. IV., equation (4”))

8n? 4y
(1) VY~ V= =0
have the normalised proper solutions
2niFt
(2) ¢k e h ’

where i, depends only on the co-ordinates of the system.! i, therefore
satisfies the equation

8 2
(3) Ve + 7 (Bi = V)i =0,
in which the time does not appear. The general solution of (1) is
2wikixt
@) b=Zase

where the ¢;’s are arbitrary constants, complex in general, which we
call the amplitudes. (The squares of their absolute values we call for
short the squares of the amplitudes.)

We now bring into play a small perturbation, constant with respect
to time, by replacing V in (1) by V +r, where r is a small function of
the co-ordinates only. We again attempt to make (4) satisfy the
equation perturbed in this way, by regarding the amplitudes as
slowly varying functions of the time. By substituting (4) in the
(perturbed) equation (1) and bearing (3) in mind, we obtain

2wkt 2niExt

\ .
(5) - 87?;—7%]0,‘4/1,‘, e n - é;?fklc'gﬁk e+ =0

for this functional dependence on the time. As necessary and suffi-

cient condition for the vanishing of the left-hand side we employ the

condition that it should be orthogonal to every function of the complete

orthogonal system ;. We thus obtain the infinite set of equations
2mi 2ri(F - Kot

(6) 6= “t_%fklclce Ry

h

where
(7 = [rhuhdo.

The equations (6) take everything into account.

If now all the proper value differences are large compared with
the ““ elements of the matrix of perturbation ” €, each ¢ (k+1) can
be taken as approximately constant throughout the period of the
exponential factor standing beside it ; thus all these terms produce
only small oscillatory perturbations in ¢, It is only for the sum-

1 The wave function y must be considered as essentially complex. We assume
the functions of the co-ordinates y; to be real, merely in order to simplify the formulae.



THE EXCHANGE OF ENERGY 139

term k =1 that this does not hold, because then the exponential factor
becomes unity. Apart from these small perturbations, we therefore
have .

3 2mie,t
(8) = 2—;:?6110; M =CLOCT,"‘

Hence the absolute wvalues of the amplitudes remain altogether
unchanged (to this approximation), but their phases undergo secular
alterations (which can also be interpreted as perturbations of proper
values ; cf. Q. II1.).

If, on the contrary, proper value differences which are comparable
with, or even small compared to, the perturbation quantities ey
occur in the unperturbed problem, then the amplitudes of all those
proper vibrations which belong to such a group of neighbouring
proper values are coupled together by the equations (6), even in the
approximation hitherto considered, in such a way that only the sum
of the squares of the amplitudes remains constant, instead of, as before,
the square of a single amplitude. We see this as follows. We shall
consider in particular the case of an a-fold proper value. Let c; be
the amplitude of a corresponding proper vibration. On the right-
hand side of (6) a exponentials then become equal to unity, and a
secular terms remain, in the approximation considered, namely, just
those amplitudes which belong to the proper value in question. The
same happens in all the a equations (6) in which one of these ampli-
tudes occurs on the left-hand side. 'We thus obtain for the determina-
tion of these amplitudes the finite and self-contained system of
equations

(9) ¢ 27”2 €1CY: 5 l=1, 2, c e a,
h xy

where for simplicity we have numbered the a amplitudes in question
from 1 to a. Accordingly, in general an exchange takes place between
the amplitudes belonging to one and the same proper value, and—in
the approximation considered—with such amplitudes only. If we
multiply (9) by the conjugate complex quantity ¢*, take the real
parts, and sum for all values of I, the right-hand side vanishes (on
account of the symmetry of the €y’s), .e.

(10) 2 ¢ie* =const.
=1

is an integral of (9). Apart from this, the equations are of course
very easy to integrate, since the e’s are constant. We are led
precisely ‘to the transformation to principal axes given in Q. IIL.,
pp. 73-4. The solution is identical with what were there called the
“ perturbed solution of zero approximation” and the ‘ perturbed
proper values of the first approximation ”.
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§ 2. The Explanation according to Wave Mechanics of the
Quantum Exchange of Energy

The very simple state of affairs which has just been described now
provides, as Heisenberg ! and Jordan 2 have ramarked, the explanation
according to wave mechanics of the fact which can quite well be
characterised as the empirical basis of the quantum theory, namely,
that physical systems apparently influence each other only when
they agree in respect of a ‘‘ difference of level ”, or nearly so; and
that the influence is always exerted on the four critical levels only,
and, moreover, always in such a way that one of the two systems is
raised to its higher level at the expense of the other, which undergoes
an ““ equivalent ”’ opposite displacement.

Thus, if we have two systems with the wave equations

82 4
(1) Vi~ Vab =~ =0

(proper functions i, for Ej)
and

82 4
(12) Vo - Va4 =0
(proper functions ¢, for F))

and imagine them united into one system (““ with vanishing coupling ),
the wave equation of the latter will, as is easily seen, be

2 »
(13) (Va2 + V¥ T (Ve + V¥ - T <o,
with the proper functions ;¢ for the proper values E;+ Iy Let us
now add a small coupling term r to V, + V,,asin§ 1. It will then be
a question of whether or not the imagined combination has caused
new degenerations, or approximate degenerations (¢.e. multiple proper
values, or proper values close together), to appear. If this does not
happen, i.e. if all the proper values Ej + F; differ sufficiently, the two
systems do not influence each other in the first approximation, that
considered in § 1. If, however, new degenerations occur in (13), a
secular exchange of amplitudes takes place.

For example, let

(14) Ek+Fl' =Ek' +1’1[
for four special values k, ', I, I' (this just means that the two systems

agree in respect of the proper value difference Ej - E; =F,-Fp).
Then the two proper functions

(15) Yadr and Yy

correspond to the proper value (14). If their amplitudes are ¢,, c,.

1 W. Heisenberg, Ztschr. f. Phys. 38, p. 411, 1926 ; 40, p. 501, 1926.
2 P. Jordan, ibid. 40, p. 661, 1927.



THE EXCHANGE OF ENERGY 141

an exchange will take place between them in accordance with the
equations

. 2m A
[01 =y (€161 + €15C5)
(16) .- 21

‘léz =‘E‘(51201 + €3905),

where the constants e; are defined by appropriate application of
equation 7, § 1.

Evidently we now have to interpret, e.g., an increase in the ampli-
tude corresponding to Y, at the expense of the other one, in the
double sense that just as in the one system the amplitude of ;. increases
at the expense of that of Yy, so in the other system the amplitude of
év increases at the expense of that of ¢, We can picture the state of
affairs as follows : the wave function of the whole system describes
at any moment the state of the first system (if we overlook the small
coupling and the existence of the second system), and the reverse
statement is equally true. To be sure, simple numbers no longer
appear as amplitudes, but instead we have linear combinations of the
proper functions of the other system, 7.e. according to the present
interpretation, of a completely external system. This, however, does
not cause any serious difficulty. In the calculation of any physical
quantity relating to the system under consideration, we have simply
to integrate over the co-ordinates of the external system in a way
similar to that described already in Q. 1V., § 7. Thus we obtain, e.g.,
the sum of the squares of the amplitudes of all those proper functions
o’;’ ;he whole system which contain ¢, for the square of the amplitude
(©) 1.1

We thus find that without assuming discrete energy levels and
quantum exchange of energy, and even without having to consider
any meaning for the proper values other than frequencies, we can give
a simple explanation of the fact that physical interaction chiefly
takes place between those systems in which, according to the older
conception, ‘“the same energy element occurs”. As Heisenberg
points out, it is a question of a simple resonance phenomenon with
beats, similar to the phenomenon of the so-called sympathetic pendu-
lum. Without quantum postulates we have arrived at an effect which
is exactly the same as if the quantum postulates were in force. This
“as-if 7 situation is not new to us. The spontaneously emitted fre-
quencies are also obtained, as if the proper values were discrete energy
levels and Bohr’s frequency condition held good.

1 The inconvenient fact that if we confine ourselves to the present simple method
of calculation the external proper functions cannot be got rid of once for all, i.e.
that the complex amplitude of ¢; in the isolated system cannot be obtained by
itself, appears to be inherent in the nature of the case. For it is not possible actually
to do away with the coupling, unless another system, namely, the radiation (or the
‘“ ether "), is taken into account as well. The Coulomb coupling terms cease to

describe the state of affairs correctly long before they have become negligibly small ;
they would have to be altered by taking the radiation from one system to the other
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According to the fundamental principles of research which are
commonly regarded as correct, does not the foregoing compel us to
exercise the utmost caution with respect to the quantum postulates,
even (I almost feel inclined to say) to distrust them—quite apart
from their axiomatic unintelligibility ¢ From the psychological point
of view it is clear that as soon as the conception of the ‘ terms” as
discrete energy levels had been introduced, we were obliged to see a
corroboration of that conception in every new exchange phenomenon
discovered, even if there is really nothing present in nature beyond
the resonance phenomenon just discussed. The reader is not to
object : oh, but the conception of the terms as energy levels is raised
above all doubts by researches on electronic tmpact, if by nothing else :
surely you will not doubt that the potential difference fallen through
is a measure of the kinetic energy of the single electron ¢ My reply is
this: Yes, I do question whether it is not very much more to the
point to push the idea of the frequency of the de Broglie wave into
the foreground instead of that of the ““ kinetic energy of the single
electron”. It is known that in passing through a potential difference
these waves undergo just that change of frequency which corresponds
to the acquired kinetic energy. Kurther, the wave equation gives
just those deviated ray-paths which are actually observed in the
determination of e/m and v.

I cannot help feeling that to admit the quantum postulates n
addition to the resonance phenomenon is to accept two explanations for
the same thing. But two explanations are like two excuses : one is
certainly untrue, and usually both. In the concluding section we
shall add another “ as-if ”’ situation to the one described here.

§ 3. A Statistical Hypothesis

If in the case of prolonged interaction of two systems we try to
obtain an expression for the average distribution of the amplitudes
from the equations (9), then, just as in the analogous case in classical
mechanics, the attempt will not succeed without a special supplementary
hypothesis of a statistical nature. Like the fundamental equations
of mechanics, the equations (9) are clearly unaffected by changing
the sign of the time ; this change can be compensated for by inter-
changing 7 and —¢ (a change of sign of all the phases, corresponding
to the change of sign of all the velocities in classical mechanics). This
alone shows that there is no ““ equalising tendency ”’ inherent in the
resonance process itself. In fact, calculation shows that the time-
averaged values of the squares of the amplitudes in general depend
on their initial values. In order to obtain statistical expressions, a
hypothesis as to the a priori probability of the initial values is there-
fore necessary. It appears that only one hypothesis is possible if it is
to satisfy the following requirements :

(1) The hypothesis is to be independent of the instant of time for
which it is stated ; 4.e. the probability that given values of the ampli-
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tudes shall occur is not to alter with the passage of time, in conse-
quence of the operation of equations (9).

(2) The hypothesis is to be independent of the particular one of
the infinite number of completely equivalent orthogonal systeins
(arising from arbitrary orthogonal substitution among the proper
functions corresponding to the same proper value) for which it is
stated (cf. Q. IIL., p. 70 et seq.).

We may easily convince ourselves that in these circumstances the
only possible assumption is the following : the probability density in
a space in which the real and imaginary parts of the amplitudes are
taken as rectangular co-ordinates is a function only of the sums of the
squares of the amplitudes corresponding to the numerically different
proper values.

It follows from this assumption that the average values of the
squares of the amplitudes corresponding to the same proper value are
equal, by symmetry ; .. each partial sum of these quantities is now
proportional to the number of terms in the sum. This is the only
consequence that we shall employ in what follows, and that only for
cases of extremely high degeneracy and only for partial sums with
an extremely great number of terms.

We must refrain from the attempt, by means of anything analogous
to the quasi-ergodic ! hypothesis, to set up these average values as
correct time-averages. The equations (9) are much too transparent
to be satisfied by any such hypothesis (they possess at least a inde-
pendent holomorphic integrals, namely, the squares of the amplitudes
of the “normal vibrations ”’). The case is quite analogous to that
of idealised solids, in which the constancy of the squares of the ampli-
tudes of the normal vibrations really ought to prevent us from
applylng any statistical reasoning.

I should not like to leave unmentioned the fact that the same
assumption regarding the squares of the amplitudes of the proper
vibrations corresponding to the same proper value was necessary in
the case of the Stark effect, in order that correct intensity ratios for
the fine structure components should be obtained (cf. Q. 11L., p. 83).

§ 4. Arbitrary System in a Heat-bath

We return to the considerations of § 2. We will now assume that
in the whole system the proper value (14) only is excited initially (and
therefore permanently). Further, we will now assume that By, Ey,
Fy, Fy, the four proper values of the separate systems which come
into consideration, and which in § 2 we tacitly assumed to be simple,
exhibit multiplicities of orders a;, ay, a;, ar. The proper value (14)
then becomes (azop +apay)-fold, for instead of the two degenerate
proper functions (15) there appear two groups, in number ooy and
aya; respectively. According to the statistical hypothesis of § 3, the

! Note to English edition. The *ergodic h{lpothesxs (Boltzmann) is what
Maxwell called the * principle of continuity of pat
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sum of the squares of the amplitudes of the first group bears the ratio
(17) apay : apay

to the sum of the squares of the amplitudes of the second group.
From what was said at the end of § 2, this is also the ratio of the sum
of the squares of the amplitudes of all the proper vibrations corre-
sponding to Ej to the sum of the squares of the amplitudes of all the
proper vibrations corresponding to Ky in the first system, considered
as isolated.

Thus, according to our statistical hypothesis, the interaction with
the external system forces a quite definite value upon the initially
undetermined ratio of the sums of squares of amplitudes corresponding
to different proper values. This value is given by the ‘ cross -
products of the degrees of degeneracy. (By  cross’’-product the
following is meant : the “ upper ” level of the system itself is to be
combined with the lower level of the external system, and vice versa).—
For brevity we will from this point call the sum of the squares of the
amplitudes corresponding to a proper value the excitation strength of
that proper value.

We now pass on to a somewhat more complicated case. We shall
still, however, abide by the condition that in the whole system only
one proper value, which we shall call E, is permanently excited.
The second system (¢;, F;), which we will now call the heat-bath, is
to be an extremely large system with an exceedingly dense proper
value spectrum, such that for every Ej of the first system, which we
will call the thermometer, there always exists a proper value of the
heat-bath, Fp, satisfying the equation
(18) Fy=E - E,,

where Fp is to be multiple, even to a high order.

Hence a quite definite ratio is given perforce to the excitation
strengths of all the proper values Ej of the thermometer ; in fact,
they are proportional to the products
(19) apoy.

The ratios of the a;’s, however, can be determined in a very general
way. For the question of the multiplicity ay of the proper value Fy
of the heat-bath, i.e. of the number of essentially different proper
functions of the heat-bath which correspond to this proper value, is
clearly identical with the question : in how many essentially different
ways could we dispose of the energy Fy in the heat-bath f the latter
were ‘‘ energy-quantised ” ¢ This, however, is exactly the question
which would be raised in connection with the calculation of the
entropy of the heat-bath according to Planck’s quantum statistics ;
in the latter, the entropy is taken to be equal to % times the logarithm
of the number sought (£ is Boltzmann’s constant). The only differ-
ence ! is that it is sufficient if we put the question in terms of a hypo-

1 There are also of course the well-known small differences in the special specifica-
tion of the ‘‘ energy levels ’ by the new quantum mechanics as compared with that
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thetical period-—the result of the enumeration is of course independent
of the form of the statement.
That is, we have

k lOg ay =S(E —Ek),

where the right-hand side denotes the entropy which the heat-bath
with energy & — E). possesses, according to Planck’s quantum statistics.
By (19), the excitation strengths of the proper values E; of the
thermometer are therefore proportional to the quantities

(20) agF SEED

(excuse the occurrence of the letter £ in a different sense). Now if the
heat-bath is very large, we may set

) " oS 1

S(8 ~ ) = S(B) - ( F>L Es

(1) i
= S(E) -

where T' denotes the temperature of the heat-bath for the energy E,
calculated according to Planck. That is, instead of the ratios (20) we
may use the following,

By
(22) aze” T,

Thus we have obtained the important result : The average excita-
tion strengths of the proper values of a system in the heat-bath are
proportional to the relative numbers—according to the old quantum
statistics—of the members of a canonical aggregate, which occur in
the separate states considered as quantised. The multiplicities of
the proper values of the system in question appear as ‘ quantum
weights .

We can also get rid of the original assumption that a single proper
value Z is excited in the whole system. This procedure corresponds
exactly to that made in classical statistics when we start from a
micro-canonical aggregate and prove that a small partial system is
distributed canonically in phase. If we wish, however, we can always
make a canonical distribution for the whole system in addition ; the
result for the partial system remains unaltered. Of course the same
is true in our case also.

The result (22) should in principle suffice to enable us to transfer
all the important results of the old quantum statistics, in particular
the statistical theory of gases, of solids, and of the * hohlraum ”
(Planck’s radiation formula)—since all can be based on this formula—

by the old (‘‘ half-integral ” quantisation, etc.). Further, we must remark that as
regards what writers at present like to call the kind of statistics (Bose and Einstein,
Fermi, etc.) absolutely nothing is prejudiced by the very general developments of the
text. The distinction only appears when we give effect to a Pauli or a Heisenberg
prohibition for the proper functions, or when we come to regard certain distributions
of energy as cssentially different, or not, in Planck’s enumeration.
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into the new theory without difficulty ; of course the larger or smaller
alterations alluded to in the footnote on pp. 144-5 must be made. I
should like to lay special emphasis on the fact that this transference
is possible, even without the support of the quantum postulates.

If the reader likes, however, he can understand everything that
has been said in this paper in accordance with Born’s theory,! in which
the postulates are retained and the squares of the amplitudes are not
interpreted as simultaneous excitation strengths in the single system,
but merely as probabilities (relative frequencies of occurrence) of the
discrete quantum states in a virtual aggregate. I have tried to think
over the question whether we might from this point of view be able to
do without the statistical hypothesis of § 3. This does not seem to
be the case. According to Born, the alteration of the ‘‘ probability
field ” as time goes on is compulsorily (causally) controlled by the
wave equation, and consequently the alteration in time of the
‘“ probability amplitudes ”’ is controlled by the equations (9). Hence
the objection to reversal mentioned in § 3 now applies to the alteration
in time of the probability amplitudes. So far as I can see, we can
therefore never reach a one-way (irreversible) course without a supple-
mentary hypothesis about the relative probability of the various
possible distributions of the initial values of the probability ampli-
tudes. I am averse to this conception, not so much on account of its
complexity as on account of the fact that a theory which demands
our assent to an absolute primary probability as a law of Nature
should at least repay us by freeing us from the old “ ergodic diffi-
culties ”” and enabling us to understand the one-way course of natural
processes without further supplementary assumptions.

Ziirich, Physical Institute of the University.
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