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Direct measurement of the quantum wavefunction
Jeff S. Lundeen1, Brandon Sutherland1, Aabid Patel1, Corey Stewart1 & Charles Bamber1

The wavefunction is the complex distribution used to completely
describe a quantum system, and is central to quantum theory. But
despite its fundamental role, it is typically introduced as an abstract
element of the theory with no explicit definition1,2. Rather, physicists
come to a working understanding of the wavefunction through its
use to calculate measurement outcome probabilities by way of the
Born rule3. At present, the wavefunction is determined through
tomographic methods4–8, which estimate the wavefunction most con-
sistent with a diverse collection of measurements. The indirectness of
these methods compounds the problem of defining the wave-
function. Here we show that the wavefunction can be measured
directly by the sequential measurement of two complementary vari-
ables of the system. The crux of our method is that the first measure-
ment is performed in a gentle way through weak measurement9–18,
so as not to invalidate the second. The result is that the real and
imaginary components of the wavefunction appear directly on our
measurement apparatus. We give an experimental example by
directly measuring the transverse spatial wavefunction of a single
photon, a task not previously realized by any method. We show that
the concept is universal, being applicable to other degrees of freedom
of the photon, such as polarization or frequency, and to other
quantum systems—for example, electron spins, SQUIDs (super-
conducting quantum interference devices) and trapped ions.
Consequently, this method gives the wavefunction a straightforward
and general definition in terms of a specific set of experimental
operations19. We expect it to expand the range of quantum systems
that can be characterized and to initiate new avenues in fundamental
quantum theory.

The wavefunction Y, also known as the ‘quantum state’, is con-
siderably more difficult to measure than the state of a classical particle,
which is determined simply by measuring its position X and
momentum P. According to the Heisenberg uncertainty principle, in
quantum theory a precise measurement of X disturbs the particle’s
wavefunction and forces a subsequent measurement of P to become
random. Thus we learn nothing of the particle’s momentum. Indeed, it
is impossible to determine a completely unknown wavefunction of
single system20.

Consider instead performing a measurement of X on an ensemble of
particles, all with the same Y. The probability of getting result X 5 x is
jY(x)j2. Similarly, the probability of P 5 p would be jW(p)j2, where
W(p) is the Fourier transform of Y(x). Even these two probability
distributions are not enough to determine Y(x) unambiguously (see
the one-dimensional phase retrieval problem21). Instead, Y must be
reconstructed by performing a large set of distinct measurements (for
example, of quadratures Q(h) 5 Xcos(h) 1 P sin(h), for mixing angles,
h, ranging from 0 to 2p), and then estimating a Y that is most com-
patible with the measurement results. This method is known as
quantum state tomography4–8. In contrast, we introduce a method to
measure Y of an ensemble directly. By ‘direct’ we mean that the
method is free from complicated sets of measurements and computa-
tions; the average raw signal originating from where the wavefunction
is being probed is simply proportional to its real and imaginary com-
ponents at that point. The method rests on the sequential measure-
ment of two complementary variables of the system.

At the centre of the direct measurement method is a reduction of the
disturbance induced by the first measurement. Consider the measure-
ment of an arbitrary variable A. In general, measurement can be seen as
the coupling between an apparatus and a physical system that results in
the translation of a pointer. The pointer position indicates the result of
a measurement. In a technique known as ‘weak measurement’, the
coupling strength is reduced and this correspondingly reduces the
disturbance created by the measurement9–18. This strategy also com-
promises measurement precision, but this can be regained by aver-
aging. The average of the weak measurement is simply the expectation
value ÆYjAjYæ, indicated by an average position shift of the pointer
proportional to this amount.

A distinguishing feature of weak measurement is that it does not
disturb a subsequent normal (or ‘strong’) measurement of another
observable C in the limit where the coupling vanishes. For the particu-
lar ensemble subset that gave outcome C 5 c, one can derive the aver-
age of the weak measurement of A. In the limit of zero interaction
strength, this is called the ‘weak value’ and is given9 by:

Ah iW~
c Aj jYh i

cjYh i ð1Þ

Selecting a particular subset of an ensemble based on a subsequent
measurement outcome is known as ‘post-selection’, and is a common
tool in quantum information processing22,23.

Unlike the standard expectation value ÆAæ, the weak value ÆAæW can
be a complex number. This seemingly strange result can be shown to
have a simple physical manifestation: the pointer’s position is shifted
by ReÆAæW and receives a momentum kick of ImÆAæW (refs 24–26).
The complex nature of the weak value suggests that it could be used to
indicate both the real and the imaginary parts of the wavefunction.

Returning to our example of a single particle, consider the weak
measurement of position (A 5 px ; jxæ Æxj) followed by a strong mea-
surement of momentum giving P 5 p. In this case, the weak value is:

pxh iW~
pjxh i xjYh i

pjYh i ð2Þ

~
eipx=BY(x)

W pð Þ ð3Þ

In the case p 5 0, this simplifies to

pxh iW~kY xð Þ ð4Þ
where k 5 1/W(0) is a constant (which can be eliminated later by
normalizing the wavefunction). The average result of the weak mea-
surement of px is proportional to the wavefunction of the particle at x.
Scanning the weak measurement through x gives the complete wave-
function. At each x, the observed position and momentum shifts of the
measurement pointer are proportional to ReY(x) and ImY(x),
respectively. In short, by reducing the disturbance induced by mea-
suring X and then measuring P normally, we measure the wave-
function of the single particle.

As an experimental example, we performed a direct measurement of
the transverse spatial wavefunction of a photon. Considering a photon
travelling along the z direction, we directly measure the x wavefunction
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of the photon, sometimes called the ‘spatial mode’ (see Supplementary
Discussion). The Wigner function of the spatial mode of a classical
beam has been measured directly but not for a single photon state27,28.

We produce a stream of photons in one of two ways, either by
attenuating a laser beam or by generating single photons through
spontaneous parametric down-conversion (SPDC; see Supplemen-
tary Methods for details). The photons have a centre wavelength of
l 5 783 nm or 800 nm, respectively. The experiment (details and dia-
gram in Fig. 1) can be divided into four sequential steps: preparation of
the transverse wavefunction, weak measurement of the transverse
position of the photon, post-selection of those photons with zero
transverse momenta, and readout of the weak measurement.

An ensemble of photons with wavefunction Y(x) is emitted from a
single mode fibre and collimated. We begin by directly measuring this
wavefunction (described in detail in Fig. 1). We then further test our
method by inducing known magnitude and phase changes to the
photons here to prepare a series of modified wavefunctions.

We weakly measure the transverse position of the photon by coup-
ling it to an internal degree of freedom of the photon, its polarization.
This allows us to use the linear polarization angle of the photon as the
pointer. At a position x where we wish to measure px 5 jxæ Æxj, we
rotate the linear polarization of the light by a. Consider if a is set to 90u.
In this case, one can perfectly discriminate whether a photon had
position x because it is possible to perfectly discriminate between
orthogonal polarizations, 0u and 90u. This is a strong measurement.
Reducing the strength of the measurement corresponds to reducing a,
which makes it impossible to discriminate with certainty whether any

particular photon had X 5 x. The benefit of this reduction in precision
is a commensurate reduction in the disturbance to the wavefunction of
the single photon.

We then use a Fourier transform lens and a slit to post-select only
those photons with p 5 0. This constitutes the strong measurement of P.

In this subset of the photon ensemble, we find the average value of
our weak measurement of px. The average rotation of the pointer, the
linear polarization, is proportional to the real part of the weak value. Its
complementary pointer variable, the rotation in the circular polariza-
tion basis, is proportional to the imaginary part of the weak value25.
Formally, if we treat the initial polarization as a spin-1/2 spin-down
vector, then the weak value is given by

pxh iW~
1

sin a
s sxj jh is{i s sy

�� ��s
� �� �

ð5Þ

where sx and sy are the Pauli x and y matrices, respectively, and jsæ is
the final polarization state of the pointer25. We measure the sx and sy

expectation values by sending the photons through a half-wave plate or
a quarter-wave plate, respectively, and then through a polarizing
beamsplitter (PBS). Thus, we read out ReY(x) (half-wave plate) and
ImY(x) (quarter-wave plate) from the signal imbalance between
detectors 1 and 2 at the outputs of the PBS (Fig. 1).

With a 5 20u, we scan our measurement of px in 1-mm steps and
find the weak value ÆpxæW at each step. In this way, we directly measure
the photon transverse wavefunction, Y(x) 5 jY(x)jexp(iw(x)). We
normalize the sx and sy measurements by the same factor, so thatÐ

Y xð Þj j2dx~1, which eliminates the proportionality constant,
sin a/W(0).

To confirm our direct measurement method, we test it on a series of
different wavefunctions. Using our SPDC single photon source, we start
by measuring the initial truncated Gaussian wavefunction (Fig. 2)
described in Fig. 1. Switching to the laser source of photons, we then
modify the magnitude, and then the phase, of the initial wavefunction
with an apodized filter and glass plate, respectively, to create two new
test Y (Fig. 3). We conduct more quantitative modification of the
wavefunction phase by introducing a series of phase gradients and then
phase curvatures (Fig. 4). For all the test wavefunctions, we have found
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Figure 1 | Direct measurement of the photon transverse wavefunction. To
begin with photons having identical wavefunctions, we transmit them through
an optical fibre (Nufern PM780-HP) that allows only a single mode (SM) to
pass. This mode is approximately Gaussian, with a nominal 1/e2 diameter of
5.3 6 1.0mm. The photons emerge from the fibre and pass through a micro-
wire polarizer (Pol.; Edmund Optic NT47-602) to be collimated by an
achromatic lens (f1 5 30 cm, diameter 5 cm, Thorlabs AC508-300-B), one focal
length (f1) away from the fibre. The lens was masked off with a rectangular
aperture of dimension x 3 y 5 43 mm 3 11 mm. Thus our nominal initial
wavefunction was a truncated Gaussian with a 1/e2 diameter of 56.4 mm and a
flat phase profile. We modify the magnitude and phase of the nominal Y(x) to
create a series of test wavefunctions (see Figs 3, 4). At 45 mm past the lens, a
rectangular sliver of a half-wave plate (l/2 sliver) (x 3 y 3 z dimensions of
1 mm 3 25 mm 3 1 mm) at position x is used to weakly measure px 5 | xæ Æx |
(see Supplementary Methods for details). The photons then undergo an optical
Fourier transform (FT) induced by an achromatic lens (f2 5 1 m, diameter
5 cm, Thorlabs AC508-1000-B), placed one focal length (f2) from the waveplate
sliver. In the Fourier transform plane, one focal length f2 past the lens, we post-
select those photons with p 5 0 by accepting only those that pass through a 15-
mm-wide slit on axis. We collimate the photons emerging from the slit with an
f3 5 3 cm focal length lens. The photons pass through either a half-wave plate
(l/2) or quarter-wave plate (l/4) and then through a polarizing beamsplitter
(PBS). At each output port, the photons are focused onto a detector (Det. 1 and
Det. 2): for the single photons, a photon counter (silicon avalanche
photodiodes, PerkinElmer SPCM-AQHR-14); and for the laser, a silicon
photodiode (Thorlabs, DET10A). The imbalance in counts or signal between
the two detectors is proportional to the real (l/2) or imaginary (l/4) part of the
wavefunction.
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Figure 2 | The measured single-photon wavefunction, Y(x), and its
modulus squared and phase. a, ReY(x) (solid blue squares) and ImY(x)
(open red squares) measured for the truncated Gaussian wavefunction.
b, Using the data in a we plot the phase w(x) 5 arctan (ReY(x)/ImY(x)) (open
squares; right axis) and the modulus squared | Y(x) | 2 (solid blue circles; left
axis). There is good agreement between the latter and a strong measurement of
the x probability distribution Prob(x) (solid line; left axis) conducted by
scanning a detector along x in the plane of the sliver. The phase is relatively flat,
as expected from the fibre mode. The slight variation is consistent with the
manufacturer specification of the first lens and the phase curvature measured
with a shear plate. We also removed the slit completely. In this case, there is no
post-selection and the weak value Æpxæ becomes equal to the standard
expectation value ÆY | px | Yæ 5 | Y(x) | 2. We plot the measured ReÆpxæ (open red
circles; left axis) after it is normalized so that

Ð
Re Y xð Þdx~1 and find it is in

good agreement with Prob(x). We find that ImÆpxæ is ten times smaller, making
Æpxæ largely real, as expected. Error bars are 61 s.d. found from statistics in
repeated scans. In b, only every third error bar is shown for clarity.
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good agreement between the expected and measured wavefunction,
including its phase and magnitude (see the figure legends for details).

We now describe how the technique of weak measurement can be
used to directly measure the quantum state of an arbitrary quantum
system. We have the freedom to measure the quantum state in any
chosen basis {jaæ} (associated with observable A) of the system. The
method entails weakly measuring a projector in this basis, pa ; jaæ Æaj,
and post-selecting on a particular value b0 of the complementary
observable B (see Supplementary Discussion for a precise definition
of complementarity). In this case, the weak value is

pah iW~
b0jah i ajYh i

b0jYh i ~ ajYh i=v ð6Þ

where v is a constant, independent of a. Thus the weak value is pro-
portional to the amplitude of state jaæ in the quantum state. Stepping a
through all the states in the A basis directly gives the quantum state
represented in that basis:

Yj i~v
X

a

pah iW aj i ð7Þ

This is the general theoretical result of this Letter. It shows that in any
physical system one can directly measure the quantum state of that
system by scanning a weak measurement through a basis and appro-
priately post-selecting in the complementary basis.

Weak measurement necessarily trades efficiency for accuracy or
precision. A comparison of our method to current tomographic recon-
struction techniques will require careful consideration of the signal to
noise ratio in a given system. In order to increase this ratio in the direct
measurement of the photon spatial wavefunction, future experiments
will investigate the simultaneous post-selection of many transverse
momenta.

In our direct measurement method, the wavefunction manifests
itself as shifts of the pointer of the measurement apparatus. In this
sense, the method provides a simple and unambiguous operational
definition19 of the quantum state: it is the average result of a weak
measurement of a variable followed by a strong measurement of the
complementary variable. We anticipate that the simplicity of the
method will make feasible the measurement of quantum systems

(for example, atomic orbitals, molecular wavefunctions29, ultrafast
quantum wavepackets30) that previously could not be fully characterized.
The method can also be viewed as a transcription of quantum state of
the system to that of the pointer, a potentially useful protocol for
quantum information.
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Figure 3 | Measurements of modified wavefunctions. We further test our
ability to measure Y(x) by changing Prob(x) by placing a reverse bull’s-eye
spatially apodized attenuator (RB in Fig. 1) (Edmund Optics, NT64-388) after
the fibre. a, We calculate | Y(x) | 2 from the data (solid blue circles) along with a
detector scan of Prob(x) (solid line) and find good agreement between the two.
b, With the reverse bull’s eye still in place, we modify the phase profile w(x) of
the wavefunction by creating a phase discontinuity at x 5 0 imposed with a
glass plate half-way across Y(x). At the bottom, we show ReY(x) (solid blue
squares; left axis) and ImY(x) (open red squares; left axis), which exhibit a
discontinuity at the plate edge. This discontinuity is even clearer in the phase
difference between the wavefunctions measured with and without the glass
plate, shown at the top (open black diamonds; right axis). Despite their
discontinuities, if we use ReY(x) and ImY(x) to calculate | Y(x) | 2 (open red
circles in a), we find that it is largely unchanged by the glass plate. This is as
expected, as the glass has a transmission near unity. Error bars are 61 s.d. found
from statistics in repeated scans. In a, every third error bar is shown for clarity.
In b, those bars smaller than the symbols are not shown.
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Figure 4 | Phase modification of the wavefunction. a, We displace the slit
transversely by Dxslit 5 230, 220, 210, 10, 20, 30 and 40mm (curves in main
panel, top to bottom). This effectively redefines the zero momentum axis of the
system. Our photons now travel at an angle to this axis or equivalently the
wavefunction has a linear phase gradient, w(x) 5 mx, where m 5Dxslit2p/f2l.
We plot the phase difference between the original wavefunction and those with
a phase gradient. For clarity, the curves have been offset to cross at 220 mm.
This corresponds to shifting the arbitrary global phase of Y(x). Inset, gradient
m as a function of Dxslit (circles) along with theory (line), which show good
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�
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