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CONTRIBUTIONS TO THE THEORY OF THE RIEMANN ZETA-
FUNCTION AND THE THEORY OF THE DISTRIBUTION
- OF PRIMES

Y

G. H. HARDY and J. E. LITTLEWO0OD,

Tasiry Corasur, Uansmivce!

I,
Introduction and summary.

1...* We have united in this paper a series of contributiona towards the
solution of various outstanding questions in the Analytic Theory of Numbers.

' Some of the resulla of which Lhis memoir containg the Grst full accounl luve already
boen atated shortly and incompletely in the following nolos and abetraciy.

G. H. Hawov: {1) 'On the seros of Rimanx's Zain-functiow’, Proc. Tondon Matk. Soc. (recorde
of proceedinga ot mavlinge), sor. 2, vol. 13, 12 March :9t4, p. xxix; {2) Hur Joa zéros de In fonc-
tion () do Himuaxs', Comples Rendus, 6 Apri) rard,

I, B Lirriewoor: 'Sur la distribution des nombres premiers’, Compics Rendoe, 23 June 1914,

G. H. Harox and J. E Lirsiewoon: (1) 'New proofe of the prinenumbar theorem and
similer theorems', Quurierly Jowngl, vol. 46, 1914, pp- 315—219; (2} 'On the seros of 1he Rikwaxy
Zeta-funclion’ and (3} 'On an sesertion of Tacuzayncaxr’, Proe. London Math. Soc. (recordu eic),
ser. 2, vel. 14, 1915, p. xiv,

' The pections, paragraphs, and formulae tained in thia ir are Lered necord.
ing to tho declinal mystem of Puaxa, the aggregats of numbera amployed torming = sslection
of ihe rational nombers arrsnged in order of magnitude. Thue every number occnrring in tha
first soction beglne with t; the first parngraph ls .1 and tha Arst formula of the Arst pars-
graph 1. 11, The secondl would naturally Le L. 12; at here four formulse cceur which are par
allel for the purposes ot our argumaont, sand bo these oro numberud 1. E21, 1. 123, 1. 133 und 1. 134

In a long and complleated memole such wa his, Puino's pysiem line many advantegos.
It enables the nuthor, in the p of revision of hie work, tordelete or insert fonnuine withsut
asrione interference with the numbering of the Indar; nnd it snablan the reader to discover
any formule referred to with the minimum of trouble.
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Our anawers to these questions are naturally tentative and fragmentary. The
importance and diffienlty of the problems dealt with should be » sufficient apo-
logy for the incomploeteness and miscellaneous character of the results.

We begin, in scetion 2, by idering some applicati to the theory of
primes of the formula

x+im
n...un_..\.__.?u@_laal@lg. (x>0, Riy) >0},

K=t

{1.11)

of Casen and MgLuiN,' a formula which seems not unlikely to play a more
prominent part in the Theory of Numbers than has been assigned to it hitherto.
Using this formula in combination with some of the 'Tauberian’ theorems which
we lave proved in a series of recent papern in the Proceedings of the London
Mathematical Sociely nnd elsewhere, we are able (in 2. 1) to deduce new theorems
a8 to the convergence of Dirichiet’s series of the most general Lype, from which
follow as coroflaries such resulis as

{1. 121) Yix)com,
{r.122) M{z)=olz)
{1.123) Mm..m“&..uo.

all of which are known to be equivalent’ to the 'Prime Number Theorem’?

Cuncx, Thine, Paris, 1804, and dwnales de TReole Nermale Supériewve, sor. 3, vob 11, 1hg4,
pp. 75—t64 (p. 99% Meiix, Adcla Socirtativ Fennioae, vol. 20,1895, no 7, pp. 1—39 (p. 61 and
Muath, Annalen, vol. 68, 1610, py. 105—337.

1t Hy (hie we menn that, trom any one of theae Tesalts, a1l the reet can be deduced Ly
elemontary rensoning which involves no sppenl to the theory of functicns of a complex vari-
ablo. That (1. 121}, and (1. 124) are syuivalent in this ssnss was shown by e i Varrie Poosain
(Annales de la Socidtd Scientifiqua de Bruzelles, vol. 10, part 2, 1898, pp 350—361) The deduction
of {1, 132) fran (1. 123) s of & vary simple charactar: that of (1.123) from (1.123) wes firet minde
by Axer {frace Matematyeruo-Firyoene, vol. 31, 1930, yp. 65—93) That (1. 123) follows from (1. 121)
wau shown by Laxpsv (Dimeriation, Borlin, 139¢), and the converss deduction is alwo due to
i { Wienar Sitrungsberichie, vol. 113, 1906, pp s89—632)

* We appond the following definitione for the benafit of readers wha may nat be familinr
with the notsticna usuel in the Analytle Theory of Hombers.

(1) fix)= O pte} moaun that a constant X existe such that | £} < Kp.

(3} fix) = olp () menns 1hat

i m.Hmw

when £ lends ta s, or W whetever limit may be in question.

LY
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Hi{x)ew 5

(1. 124) . log x

In z.z we obtain an explicit formala for the function

(1.13) Fi)=Sam—ne-m @riy)>o,
1

from which we deduce that, assuming the hypothesis of RizuMaxy as to the
zerod of £ (),
(r.141) Fiy) =0 w

88 y—0, while a positive constant K exists, such that each of the inequalities

Fiy<—K d\w. Flyy>K .—\w

in satisfied for an infinity of values of y tending to zero, From this follows as
a corollaty the theorem of Bommipt! which asaerts the existence of a K such that
each of ths inegualities

{1. 142}

(£, 143) Ple)—x<—EVz, pin)—e>KVa

is aatisfied for an infinity of values of z tending to infiniky.
It should be ohserved, however, that our method does nob enable us to
prove the wider inequulities

{1.15) Pla)—ae<—a8-9, piz) —x>2f-0,

(3) pin)=(— ¥ It n io & product of ¢ different primes, apnd is otherwise zero,
{4} Afw)m log » 1t m = p®, and in otherwise zero,

T Migtm D alw
L5

© le)= DA
L4

L)
(7) Tl {x) {a the anmber of prlmes less than or equal to o.
1 Malth, Annaben, ol 57, 1909, pp. 195=304; Lanoav, Handbweh, pp. 711 ot sag. Natnrally

our argument does not give #o large & valus of K as Bquuior's. The uctunl insqualltles proved
by SoWuror acs not the {nequslities (7. 143) bt the subatantially equivalens inequalitien (i, §1}

{
T
&

e ein DT ey 2 iR

Foike T

e bk e

s o
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which hold when the upper limit @ of the real parte of the zeros of {{s) is
greater than w
ledge of the properties of (), to give n satisfactory proof of the explicit for-

mula for

Nor does it seem possible, in the present state of our know-

1(y) = Jlnpe—se

which correspords to that which we find for the function {1.13).

1.2, In 2.3 we are concerned with & statement made by TsCHERYSORER in
1853, of which no proof of any kind has yet been published. TecBERYSOHZY asserts
that the function

241
Flg)=e=— =% fe—to { g—Nv—..... IM_lv »@lau

tenda to infinity as y—o. We prove that this result is truwe if all the complex
zeros of the faunction

{1.21) Lig)=1—*— 3~ " 450 — - (v 0)

have their real part equal fo M

assumption is false, then TSCHEBYSCHERY's assertion is also false, but this we have

not succeeded in proving rigorously. The difficultiea which have debarred us

from a proof are of the same nature aa those which have prevented us from

deducing the inequalities (1. 13} from our explicit formula for the function (1. z3).
In 2.4 we prove that

There seema to be little doubt that, if this .

T

Tﬂmf.:_.&z aT log T
-7

(1. 22)

48 T—w, The method used may be adapted to abow that

-8

I
{r.23) M_ﬂ.mi.c [di oo (2021 [ (2 —2) a—af’

! Toonenvsonur, Bulistin do Tdoadduis Jmpirials dmw Sciemcer de Sb Peborgbowryg, vol. 13,
1833, v 208, and Gewores, vol. 1, p. $97; Turnat, Rendiconti & Pelawo, vol. 34, 1997, pp. 155156
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if _a,A«." but there js nothing essentially new in this Jast formula, as it follows
z

from the functional equation satistied by [(s) and the known result

T
DE?::.&E%QEF
='p
where 7> “._

We conclude this section by poticing a remarkable formula, the form of
which was suggeated to us by an ohservation of Mr 8. Ramanvian. We are
unsble to give a satisfactory proof of this formuls, but it seems to us well
worthy of attention. It is intimately connected with an expression of the func-

tion Tmhm_ as & definite integral, which is due to MarcEL Riesz.®
5

1.3. In section 3 we are concerned with the series

{1.31) M_nae_ua_i..,aaqm -,
where a,x, and =z are real, and g ia a complex zero of [(s). Our object is to
obtain results for this series eimilar. $0 those obtained by Lawpau® for the
simpler series .

2,
and our main argument is an sdaptation of his.* The resulis of this section are
simplified in form if we assume the truth of the RiFMaxN hypothesis. Writing

Y 4 iy for p, and confining curselves to the zerce for which y> o, series of the
2

type (1.31) are found to be substantislly equivalent to series of the type

(r.32) Mﬂlsm&«_euqs.

where ¢,8, and « are real and the first two positive. Our principal result is that

' Latpiv, Huondbush, p. 816, ”

* Acts Mathematica, vol. 4u, 1916, pp. 185—190.

1! Math, Annalen, vol. 71, 1913, pp. 548—564. )

+ The idea which dominuten the critical stage of the mrgunent 1w aloo Larpav's, bui it 1o
L tound in snothuer of Lila papers (Ubsr die Ansahl der Gitterpunkts in gewlssen Beralchen',
Gittingsr Nuohrichien, 1912, pp. 687—771, eapadially p. 707, Hilleatz 10).

P S G R

e r i o e M e T A
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(1.33)
LU B

this result is trivial if @ > r, but otherwise significant. The apparent dependence
of the order on a is curicus, and wo are disposed to believe that it does not

L
teally correspond to the truth, and that the order is really DTJ Ev for all
values of @ und all positive values of 8. But this we arc unable to prave.
. 4. Bection 4 is devoted to & closer siudy than has yet been publisbed

of the zeros of the Zeta-function which lie on the line o= M That some such

zeros exist was first shown by Gram.! and the later investigations of DR La
VarpLge-Povssiv, Gram,'! LinpeLdr,! and BackLuND' have shown that there arc

exaoctly 58 oo the line

H .H .
A.. |Heo... +Hao-.
2 2

snd no other complex zeros between tho lines f——100, f=100. In other
words the function E{f) of RiEmaNny has exactly 58 real zeros between — 100
and 100, and no complex zeros whose real patt lies between these limits,

It was shown recently by Harp¥? that Z(t) haa an infinity of real zeroe,
The method of proof depended on the use of (i} the CamEN-MRLLIK integral and
{ii} a lemma relating to the behaviour of the series

Hlo, 1) =142 09"

when g tends in & certain manner to the point — r on the oirele of convergence.
The proof given by Harpy was materially simplified by LaNpav,! who showed
that no property of the Y-function was needed for the purpose of the proof
extept the obvious one expressed by the equation

N

1—Igl

awugovn.u i Q

' Reo Guaw, dein Mathamabica, vol. 27, 1909, pp. 289—304; Lusesioe, Actn Socistatis Fennior,
vol. 31, 191§, ne. 3; Bagkiuxe, Oversigh af Finska Velonskap Societolans Firhandlingar, vol. 54,
1911—12, A, no. §; omd furthar sniries under thess names io Lavoava bibliograpby.

' Comptes Rondus, & April, 1914.

' Math. Annalen, vol, 96, 1915, pp. 211—343
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LaNpav also extended the proof so as to apply to the functions defined by the
series

FARL)

3-

il

where x{n) is & ‘character to modulus &' and in particular to the function
(r.21). He alsc proved that there is n zere of Z({t) between T and T+, for all
positive valuea of 8 and ali sufficiently large values of &', From this it follows
that the number ¥,(1) of zeros between 1 and T is of the form 2 {log log 7).

The original proof given by Hamrby made use of two parameters ¢ and p;
and our firet idea, for obtaining a more precise result, waa to treat « and p a8
functions of one another. The result indicated by onr investigations was that

1
of tha existenoe of & zero between 7' and T+ T¢ ** for any positive ¢ and ail
snificiently large values of '. This would prove that

1.
NoT) lb?_» ]
But this proof has never been completed, as we aro now able ta prove, by an
1
entirely different method, that there is & gera between T and T4 * for any

positive 8 and all sufiielently large values of F'. This shows that

(1. 41) N(T) v b?” s..v.

Our proof of this result is now free from any reference cither to the Camex-
MerLir integral or to the theory of elliptic functions.
We have entertained hopes of showing, by & medification of our argnment, that

R ()= (T4,

Bub our sttempts in this direction have so far heen unsuecessful.

1.5. Finally, Beotion 5 contains a full demonsization of a result glven still
more recently, with sn outline of the proof, by Lirrrawoon.! It followa from
the investigations of Sommipr, already referred to in 1.1, that the insqualities
{1.143), or the substentially equivalent inequalities

! Ben Laxpsy, Handbueh, pp. 401 6¢ 08g.

' For an fon of this notation sse ocur paper Home I'roblomu uf Diophantine Ap-

proxlmstion {IIY, dela Mathematics, val. 17, pp. 19313 {p, 225}
¥ Comples Bendws, 32 June 1914,
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fr.51) Hg)—Liz+ > LiVi<—K Va s} —Liz+ - LiVe> K Va |
z log = 2 log x

are each satisfied by values of = which surpass all limit. Tt is shown here that
these last inequalities may be replaced by

; Vz log log log = , Vi log log log =
{r.52) T{x)—Liz<—K fogz y D(zy— Liz > K - Togz .

TFrom the second of these inequalities it follows, in particular, that the relation
(1. 53) {x) < Lix,

which has been regarded, for empirical reasons,” as probably true, is cer-
tainly false.

The supposed inequality (1.s3} is, as las been shown by Gauss, Goip-
scuminT, Graw, PRBaamEN and MEIssEL,! supported by evidence drawn from
the distribution of the prime numbers less than r,0o0,000,000. The difference

II{z)— Lic contains {to put the matter rowughly) a term |Mh_._\m and an

oscillating term of order not less than fgmmwﬁkm. which is of course of
higher order than the former term. But the increase of log log log z is exceedingly

plow; thus
log log log 10,000,000,000 = 1143}

and it is not surprising, therefore, that the term of constant sign should exert
a preponderating influence throughout the limits within which calculation is
feasible.

The question atises s to whether the funclion log log log x can be replaced
by any more rapidly incrensing function, The method which we uee, depending
as it does on KRONEOXER's theorems concerning Diophantine Approximation, has
a certain analogy with that by which BomR proved that {(1+41} is not hounded
for §>1.' In that case the conciusion is that L(1+ t5) is sometimes of order as
great as log log #; and LirTLewoon? bas shown that (on the RiEMAnN hypothesie)

I (1 + i) = O {log log¢ log log logt)

i Sep the taferspces in Luwpar's Lilliography, snd Leauss's List of prime mumbers from
: o 7o.000, 721 (Weahington, 1914k

t Boum angd Lanody, Gitbinger Nachrichiow, 1910, pp. 3103—330.

¥ Complen Rendws, 13 Jan. 1912,
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so that the conclusion is certainly very nearly the best possible of its kind. It
is quite passible that this may be true also of the inequalities (1.52); but we
are naturally not prepared to express any very definite opinion on the point.
It may be remarked in this connexion that Bonr and Lanpavu! have shown that,
on the RieMaNN hypothesis, the true maximum order of
: x4+ t)
§(x + i)
is exactly log log¢.
The method used in this section is capable of application to other import-
ant problems, It may be used, for example, to show that if
mip—1}
¥ (x)=R(—1) * logp

M<=

then sequences of values of x exist for which ¥,(x) tends either to « or to —w,
and indeed as rapidly as

Vz log log log z;

and that, if JI,(r) denotes the excess of primes not greater than z and of the
form 4m + 3 over those not greater than z and of the form 4n +1, then sequences
of z exist for which IT,(z) tends either to o or to — «, and indeed as rapidly as

Vz log log log =
log =

This result is of particular interest when considered in connection with those of
2.3. It is known that (to put the matter roughly) the distribution of primes
4n + 3 is in some senses denser than that of primes 4n +1. Our results confirm
and elucidate this vague statement, and show in what senses it is true and in
what senses false.®

2.
Some applications of the integral of Cahen and Mellin.

2.1.
The prime number theorem and allied theorems.

2.11. The investigations of this part of the paper will be based upon cer-
tain known results which we state in the form of lemmas.

! Math. Annalen, vol. 74, 1913, pp. 3—30.
* Compare Lanpav, Math. Annalen, vol. 61, 1905, pp. §37—550.
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Lemma 2. 111. It x>0, R(y)> 0, and y=—* has its principal value, then

u.ﬁqa

—y o 1 -

e :!na..& I(s)y—*ds.
x=fw

This is the CABEN-MELUIN integral.
Lemma 2z.112. If (1) F(o+ti) is a continuous function of the real variable ¢
and (ii) the integral

k._za +ti)|dt

i3 convergent, then

@
.\ 2 F(g + ti)dt—o
—_—
as T —o0 or x—c.
This result is due to WEYL; it is a generalized form of a theorem of Laxpav.!
Lemma 2.113. Let « be a positive number (or zero), and (As) an increasing

sequence such that A, — o, nf‘ —1; and suppose that

n—1

(i) @, is real and satisfies one or other of the inequalities
5> — Ki " (ly— Anma), @0 < K7 0 — Anmi),
or is complex and of the form

O™ (e — An -1}
(il) the series
1) = Dane™ v
is convergent for y> o, and

fy)cody—e
as y—o. Then

Ax,

TR Y a)

a8 N0,

1 See Lanunav, Prace Matematyczno-Fizycene, vol. a1, p. 7o
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This lemma is equivalent to Theorems D, E, and F of our paper ’Some
theorems concerning DIRICHLET’s series’, recently published in the Messenger of
Mathematics.

2.12. Theorem 2.12. Suppose that

(i) the series Sanks * 18 absolutely convergent for ¢ >a,> o,

(ii) the function F(s) defined by the series is regular for o > ¢, where 0 <c < a,,
and continuous for o >c¢,

(iii) F(8) = O(eCl4)),
where C Awa‘ uniformly for ¢ >c. Then the series
1(5) = S ane=nv

18 convergent for all positive values of y, and

fy)=o(y—*)
as y—o.
We have

l.‘nuﬁ
(2. x21) nurgl% .N.E:..S».%
if y>o0, x>0, and 80

x.v.-.l
(2.122) 1) = 72 Ty~ Foas

x—gx

' Vol. 43, 1914, pp. 134—147. It am satisfies the second form of condition (i), the series
F)is ily convergent (absolutely) for y > 0, so that the first clause of condition (ii) is
then unnecessary.

There are more general forms of this theorem, involving functions such as

e....*_en @ve“_ow log @vs ...... ,

which we have not troubled to work out in detail.

The relation f{y) oo Ay—2 in condition (ii) must be interpreted, in the special case when
A =0, 88 meaning f(y)=mo(y—a); and a corresponding change must be made in the con-
clusion. .

130 G. H. Hardy and J. E. Littlewood.

if y>o0, x>0, the term by term integration presenting no difficulty. In virtue
of the conditions (ii) and (iii) we may replace (2.122) by

etim

(2. 1221) Jy) =X .\ I'(s)y—*Fls)ds.}

27

The result of the theorem now follows at once from Lemma 2. 112.
Theorem 2.-121. If the conditions (i), (ii), and (iii) of Theorem 2.12
An

are satisfied, (iv) —"——1, and (V) an ia real, and salisfies one or other of the
-1

tnequalities
an> — KA (n—hno1), @a <KL (Aa—An),
or is complex and of the form

0015~ (A —Aa—1)};
then
=l Ay e +aa=o0(i3).

This theorem is obviously a direct corollary of Theorem 2.12 and Lemma
2.113.
Suppose in particular that i,=n, a,=u(n), and ¢=13. Then

P =350 = g

and all the conditions of Theorem 2.121 are satisfied. Hence we obtain the
well-known formula

M: (») =o(n),

r<n §

which is (1.122).

t The argument i so much like that of Laxvav (Prace Matematyceno-Fieycme, vol. 21,
pp. 173 et seq) that it is hardly worth while to set it out in detail. We apply Cavcny's
Theorem to the rectangle

c—iT, x—iT, x +iT, c+iT,

and then suppose that T'—co.
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2.13. The theoreme of 2.12 do not furnish a direct proof of (1.121) or
(r.123). Tn order to obtain such a proof of (1.123) we must frame analogues
of Theorems 2.12 and 2.121 which are applicable when ¢ =o.

Theorem 2.13. Suppose that (i) the conditions (i), (ii), and (iii) of Theorem
2.12, and the conditions (iv) and (v) of Theorem 2,121, are satisfied, with ¢ =o;
(ii) that the function F(s) is regular for s =o0. Then the series Sa, ts convergent
and has the sum F (o).

The proof differs but slightly from that of Theorem 2.121. Instead of
(2. 1221) we have the equation

2171t

(2. 131) fg)=F)+ *. % I'(e)y=* F(e)ds,

where the path of integration consists of (a) the imaginary axis from —iw to
—14, (b) a semicircle described to the left on the segment of the axis from —id
to 74, and (c¢) the axis from ¢4 to 1co. That the rectilinear part of the integral
tends to zero follows substantially as before. Also

: log @

% Flo)y—+F(a)ds =Y *TUNFEA) — o (—i8) F(— i)

_ am@ M v} r@Faa=0 _&,@ —o1).

Thus f(y) — F(o) as y—o, and so, by Lemma 2. 113, Za,= F(o).
The conditions of the theorem are satisfied, for example, when

_ L0 R -1
kn=mn, Gn % c=o0, F(s) {e¥n

Hence the equation (1.123) follows as a corollary.
2.14. In order to obtain the equation (r.121), and so the prime number
theorem, we require a slightly different modification of Theorem 2.121.
Theorem 2.14. Suppose thai the conditions of Theorems 2.12 and 2.121
are salisfied, except that F(a) has a simple pole at the point s=c, and that the
residue at the pole is g. Then

132 G. H. Hardy and J. E. Littlewood.

A
) .Qn:.

Ay=a t+a,+--

The formula (2.131) is in this case replaced by

(2. 147) )= g0 @y~ [ PO Pads
where the path of integration is of a kind similar to that used in the preceding
proof. Practically the same argument gives the result

fy)eoglic)y—e,

and from this, and Lemma 2. 113, the theorem follows at once.
If we take

Y@,
An=mn, @y=_1(n), c =1, F(8) L(s)

we obtain (x.121).
2.15. We add some further remarks in connection with these theorems.
(i) Theorem 2.14 may be regarded as a generalisation of a theorem of LaAN-
DAU,! to which it reduces if we suppose that a, > o, that F(s) is regular on the
line ¢ —c, and that the equation F(s)=0(eC!¢l) is replaced by F(s) = o(|¢1%).
In his more recent paper already referred to* LANDAU generalizes the sec-
ond of these hypotheses in the casc in which the series for F(s) is an ordinary
DiriCHLET's series, showing that it is enough to suppose that

L_,..:.? et.Timu‘ﬁ.v
should- exist, uniformly in any finite interval of values of t. This hypothesis is
more general than ours, and our result is naturally capable of a corresponding
generalization, which may be effected without difficulty by any one who compares
LaNpau’s argument and ours.

(ii) Theorem 2.121 breaks down when the increase of 1, is too rapid, for
example when i,~¢*. It is interesting to observe that in this last case the
result is still true but is an obvious corollary of familiar theorems. The series

1 Handbuch, p. 874.
? L c. pp. 128, 130 (pp. 173 et 8cq).
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F(s) is now a power-series in e~*; condition (iii) is satisficd ipso facto, and the
continuity of F(s) for o > ¢ involves

Ane~ "¢ =0(1), an = o0(e"°), 8, = o(e"°)
(iii) It is a natural conjecture that the occurrence, in Theorems 2.121, ete.,

of the condition C < “ s (which seems somewhat artificial), is due merely to some

limitation of the method of proof employed. It is easy to show, by modifying
our argument a little, that this is so.
Theorem 2.16. In Theorems 2.121, 2.13, and 2.14, it i3 unnecessary to

suppose that C< wﬁ.

Choose a so that w:d >C. Then we have instead of equations (2. 121), ete.,

x+-..8

(2. 151) X gmtmptle L g I'(as)(tay)~*ds,
x—fm

:.w-.l

(2.152)  f(g)=] Dane™0" =L \ I'(as)y—*F(s)ds =
n&.ﬂ
- ww«...\ I'(as)y —* F(s)ds,
c—iw

(2.153) fly) =o(y=°);
or, if yls =y and AN e e,
(2.154) O() = Dane™"*" = o(=).

Now

~ -1

1 1
*{An — An-1)2°

o f.c—
HA" T (ttw— tta—1) =2t

where d,_, < .4 <4,. Thus the ratio

ae—1

Hn (tta— E!I:_.v
257 (A — A1)
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lies between fixed positive limits. Thus (e. g.) @w =0 {27 (ds — An—1)} implies

Gn = 0 {ua° " (ttp—— ttu—1)}. Henco we can deduce from (z.154) that

(2. 155) A= o0(un?) =o@p).

It follows that the truth of Theorem 2.121 is independent of the condition in
question; and similar arguments apply to the later theorems.

2. 2.
The function {.1(n)—1}e="¥,

2.21. If R(y)>o0 and x> 1, we have

x4 io
I S . Al )
(2. 211) y) ML::X V= n:.\N?Z\ .2&&?
x~in
Let QHISIM. where m is a positive integer; and let us apply CavcHY’s

Theorem to the integral

taking the contour of integration to be the rectangle
(g—1T, »—iT, v +iT, q¢+:T),

T having such a value that no zero of ;(s) lies on the contour. When we make
T tend to infinity, we obtain the formula

-+...a i
(2. 212) ISHI% :uv..\t.nnuwaql.Mh.

where R denotes a residue at a pole inside the contour of integration.!

1 The passage from (2.211) to (2. 212) requires in reality a difficult and delicate discussion.
It we suppress this part of the proof, it is because no srguments are required which involve
the slightest novelty of idea. All the materials for the proof are to be found in Laxpiv's
Handbuch (pp. 333—368). But the problem treated there is considerably more difficult than
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If now m—w, ¢g—-— o, it is easy to prove that the integral in (2. 212)
tends to zero. For in the first place

5'(a)

wg.ch_Om It}

uniformly for 6 <—1.! On the other hand, if y = rei?, where — “ <0 Aw& 5

we have

L +:v
¥ +sl:~.Ai§|w.+ 1f) o e R .oA.: I:v:eul..s N

A!§|» + :.'.. Al.w +.-..v
-0 “_m\:_”.m‘@algv.:u.

| Jron-sige

g—io

i_ %snan_.ué..:om:_&vl?

Hence

(z.213) fyy=—2R

where the summation now applies to all the poles of the subject of integration.
These poles are

(i) a simple pole at s =1, with residue |..m\"
T
(ii) a simple pole at s = o, with residue M,M‘M.W“
(iii) simple poles at the points ‘s =g, the residue at s —¢ being I'(p}y—¢;
(iv) simple poles at the points § = —1,—3,—5,", the residue at

g=—2p—1 being
Yt f(—2p—1)

T lap+r) 2I§|:

arm-onc.. r’opro....-.E-olo-mos_nt:—..nouo.-—io-_:o_w.noaqawuenr=o~o
everything is absolutely convergent, since | I'(o + #i)ys +#¢|, whore R(y) > 0, tends to zero like
an exponential when {—co.

1 Laxpav, Handbuch, p. 336.
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(v) double poles at the points ¢ =-—2,—4,—6,----, the residue at
8==—2p being
[ ”_a J 1 15"(—2p)|,
e Vel t—a
zp)1] 8 Ae 2 Yap T A a vl
where 4 is EULER’s constant.
Thus finally

(2. 214) ) u“\ — Arely=e+ 0(y).
where
(2.2141) O(y) = @, (y) +y* log @915_

and @,(y) and @,(y) are integral functions of y.
2.22. On the other hand we have

x4 i®
o.llw, == »,.mn.%w?zu.ﬁ:,&
x—sx -&.‘8 )
— 2 [roy=teds+} +MA,H5 L=,
=i

The integral on the right hand side tends to zero, when m — «, if |y| < 2s. For

rs)t(s) = »i.moo Sam?li Q“Auﬁvlin .a.:v.

and so
i
- A ..Iav_‘_
Y(e)y~*i(a)de = d
s = ol [ G-,
Thus
(2. 221) Mola- i + MAI 5..2! n).t

! This is merely another form of the ordinary formula which defines Benxouvrir's num-
bers. That

™ - w +o(y),

where #(y) is a power-series convergent for {y| < 2x, is of course evident.
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Subtracting (2. 221) from (2.214) we obtain

(2. 222) F(y)= J(A(n) —1)e="v = — I (Qy~*+¥(y),
where
(2. 2221) W) =, )+ v*log (5) .00,

and ¥,(y) and ¥,(y) are power-series convergent for |y|<zm.

2.23. We shall now assume the truth of the RIEMANN hypothesis, and
apply the formula (z.222) to the study of F(y) when y—o by positive values.
We denote the complex zeros of [(s) whose imaginary part is positive by

W+-.~.:.“ +ayy, e , where y, <7,<----. Tt is known?® that
Yi=T14-1- ", Y3 =m21-0--, Py==25:0-""".
We shall require some definite upper limit for
N(T +1)— N(T)

where N(T) is the number of zeros for which T <y < T+ 1. It is well-known that
N(T +1)— N(T)=O(log T), and it is easy to replace this relation by a numer-
ical inequality, such as

(2. 2311) N(T+1)—N(T)<2-5lg T;

all that is necessary is to introduce numerical values for the constants in the
argument given by Laxpau.? In order to prove the relation (2.2311), however,
comparatively careful numerical calculations are needed; and a much cruder
inequality is sufficient for our purpose. We shall use the inequality

(2. 2312) N(T+1)—N(T)<2T,

in the proof of which only the roughest approximations are necessary.

1 Gaam, I e
* Handbuch, pp. 337 et seq. It is known that, on the Rimuaxx hypothesis,

log T
2z

N(T+1)—NT)eS

(Boms, Laxpav, Lirruewoon, Bulleting de I'Académie Royale de Belgique, 1913, no. 12, pp. 1--3§).
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We now write

(2. 232) Mﬁﬁ.r\leﬂ —\u (u, +n,' + R),
K/
where Y
N —in ot " T
w1} 4infyin, wmr (i), fat == Vs
Then

RAPPRY ﬁ\m& v
|, »N.._ cosh 7,

1 @« 1
.IAnw:.aM M e 27"

r=2l r<yr=<r+l

luad  —len
< 8e? M; 2
23

(2. 233) <240e~¥ 48 ¥
50
2.24. From (2. 222), (2.232) and (2.233) we can at once deduce

Theorem 2.24. Suppose that y— o by positive values. Further, suppose the
RIEMANN hypothesis true. Then

Fly)=J(A(n) —1)e-*v=0 ﬁ\“
and there is a constant K such that each of the inequalities

N K

F <= F( i

w<—y y) > Vy

is satisfied for an infinily of values of y tending fo zero.
We can express this by writing?®

\H L ~, I
(2.241) Fiy)=0) Y ESInL\w. F(y) u.cl\e.

From the second assertion in Theorem 2.24 we can of course deduce as a
corollary

! In our paper 'Some Problems of Diophantine Approximnation’, dcta Mathematica, vol.

37, p. 225, we defined f= Q(5) ns ineaning /' » o(g). The notation adopted here is a natural
extension.
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Theorem 2.241. There is a constant K such that each of the inequalities
Plr)y—x< —KVzx, px)—z>KVx
18 satisfied for values of x surpassing all limit; that is to say
Y&)—2=90.'Vz}, ¢(x) —z=R:'Vz).

This is substantially the well-known result of ScuMipT. In Section 5 we
shall show that it is possible to prove more.

It is known that, if the RfEMANN hypothesis is false, then more is true than
is asserted by Theorem 2.241. In fact, if O is the upper limit of the real parts
of tho zeros of {(s), and d is any positive number, then!

Y(2) — x = Q,(20—9), P(x)—x=28(°%—1%).
It seems to be highly probable that in these circumstances we have also
Fly)=20(y=5+%), F(y) =2r(y—°+%),

but we have not been able to find a rigorous proof.

2.25. The equations (2.241) show that, if the RIEMANN lhypothesis is true,
the function F(y) behaves, as y —o, preciscly as might he expected, that is to
say with as much regularity as is consistent with the existence of the complex
zeroes of {(s). The results which will be proved in Section 5 will show that this
is not the case with the corresponding ’sum-function’ ¥ (z) —z. It might
reasonably be expected that

Wx)—2=0Vz), P(a)—2 = 2(VT), Ylz)—z = Q&(Vz);

but the first of these equations is untrue. This being so, an interesting question
arises as to the behaviour of the corresponding CESARO means formed from the
series 3(.Z(n)—1). The analogy of the theory of FOURIER’s series suggests that
they are likely to behave with as much regularity as the function F(y); and this
conjecture proves to be correct. )

! Scamivr, Math. Annalen, vol. 57, 1903, pp. 195—204; see also Lawosv, Handbuch, pp. 712
et seg. The inequalities are stated by SBcmwinr and Lawpav in terms of Hx)
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We shall consider not Cesiro’s means but the ’arithmetic means’ intro-
duced by MarceL Rigsz.! It has been shown by Riksz? that these means are in

all substantial respects equivalent to Cesiro’s; and they have many formal
advantages over the latter. If

A(n) =an, f(y) = Xane~v,

then RiEsz’s mean of order 4 is

8% (w) = M T - “vona.
n<a
Ands, if x> 1, N
. x4in
(z-251) el | nﬁw.ﬁﬁq. mm_..w wds.

If we perform on this integral transformations similar to those of 2.21,* we are
led to the formula

(2. 252) 8%(w) ﬂm‘%w —_ M ﬂﬂuﬁwhﬁ% w? + _@g .

). . Lo
where .m.A.mv is in general a power-series® in — convergent for w> 1.

2
w
Similarly, if

1 =Dy, e - Mv: e—nv,

eV g

and we denote RiEsz’s mean of order 3, formed from the b's, by t*(w), we have

* M. Riesz, Comples Rendus, 5 July and 22 Nov. 1909,

* M. Riesz, Comptes Rendus, 12 June 1911,

! This formula is a special case of a general formula, due to Rixsz and included as
Theorem 40 in the Tract 'The general theory of Dirichlet's series’ (Cambridge Tracts in Math-
ematics, no. 18, 1915) by G. H. Haroy and M. Riksz.

¢ See 2.21 for our justification of the omission of the details of the proof. Here again
the integrals which occur are absolutely convergent.

* If 3 is an integer, then QAWV is & finite series which may include logarithms. It is in

any case without importance.
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|  FUresare
+1)I'(s) .. w
] e bl *ds —
(2. 253) W(w) = ua. Fd+1ts) G(s)wde q+~+ﬂAEv
* Il-s
where N.A.Uv also is in general a power-series in .ue convergent for w> 1. Finally,

subtracting (2. 253) from (2. 232), we obtain

L )
er

LT U ¢ .
where NAN_..V is in general a power-series in = convergent for w>1. The series

involving the ¢'s being absolutely convergent, it follows at once that the left
hand side of (z2.254) is (on the RIEMANN hypothesis) of the form O(Vw). That
it is of the forms £.(Vw), 2r(Vw) requires no special proof; for this is a cor-
ollary of Theorem 2.24. We have therefore

Theorem 2.25. All Rigsz’s means (and so all CESARO’s means), formed from
the series 3{.4(n)—1}, are, on the RIEMANN hypothesis, of the forms

0(Vw), 2.(Vw), Qa(Ve).

This theorem is in part deeper, in part less deep, than Theorem 2.24. The

O result of Theorem 2,24 is a corollary from that of Theorem 2.25, and the £2-

result of Theorem 2.26 a corollary from that of Theorem 2.24, the deduction in
each case being of an ordinary ’'Abelian’ type, i. e. of the kind used in the proofs
of ABEL’s fundamental theorem and its extensions.

2. 3.
On an assertion of Tachebyschef.
2.31. It was asserted by TscHEBYSOHEF' that the function

t+|

(2. 311) Fly) —e—3v—e—50+e-W4 e~V —. .= MT. T g—py
2>2

tends to infinity as y—o.

! Bee 1.2.
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We shall now prove that TscHEBYSCHEF’s assertion is correct if all the complex
zeros of the function L(s), defined for ¢ > o by the series 1=*—3—+ 45—+ —....
have their real part equal to M._

We have, if 6 >0,

._.v. A~Iﬁlc¢r.isl.v

N\Abv = —a —3 't 5me—

(—1)mp—1n

log L(s) = M mpi

am

N\.AS. . Mal:!?xl:_cw.ﬁ.

L(s) e
Hence
o 2tin
@32 ) hm.ﬁi,: 2 ogp e—#™voe — NAW&W ?C(.Eﬁv&m
if x>1.

We now transform this integral by Caucuy’s Theorem as in 2. 21, and
obtain the formula®

(2.313) Hy)y=2reyy-c+ o),

where ¢ is a complex zero of L(s) and ®(y) is a function of y of much the same
form as the function @(y) of (2.214).2
2.32. We now require an upper limit for the sum 3|I'(g)]. We could

* The evidence for the truth of this hypothesis is substantially the same as that for the
truth of the Rikwaxx hypotheris. Laxpav (Math. Ann., vol. 76, 1915, pp. 212—243) has proved
that there are infinitely many zeros on the line o= w

? The ‘trivial’ zeros of L(s) are $ = — 1, —3, —§,----: see Laxpav, Handbuch, p. 498.

O(y) =@, () +y log @ e,
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obtain such a limit by an argument similar to that of 2.23: but it is simpler to
proceed as follows.'
The function L(s) satisfies the equation

L(1— 8) = 2* 7 —*I"(s) in “u§ L(s).

We write
1
2 ..lww.. L =56 -5 + :.v -E().

Then Z(f) is real when ¢ is real, and an even function of ¢. And if we write
elwﬁ..&: then the zeros of (! are given by t=y. We are supposing that

all these zeros are real.
We have now

=) uma:%lmv.

+

I
Cald vk
(2.321) mtvﬂms:% — Jir+ ae=1l},
7 .
rht

where only the positive 7’s occur in the products. Putting ¢ ~1 we obtain

T
canl?”
(2. 322) E(o)Il 7

s e POE] o B
E(r) Vo n—\a.

and so

P . 1
I n.fn%.b’ulv anM&luI.ﬁ &.....:.Am..lhlmvb?v«
-+ 7
i
or, if a=1+2,
! OQor arg t is delled on one applied to the Zeta-function by Jeuskx, Comples

Rendws, 25 april 1887,
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z(x + 1) 243 I_Iwu I
(2. 323) In u+rM|l 2 7 r u+n&vh?+uv.
Lip
4
Finally, expanding each side of (2. 323) in ascending powers of z, and equat-
ing the coefficients of z, we have

1 1 1
(2. 324) Mm+*.3_smnl.n_onalm.h +w.ah.3.
4

where A is EULER's constant. From this it follows easily that, if y, is vhe
least of the positive y’s, then

T I
(2. 325) mtll.AMl];— <-x,
S 4 >+
ok O r
7>3.!

2.33. Now, as in 2.23, We have

_iw # i _ - ﬁ\oo.m‘a.

and the ratio

Vo
aamm*an m.—.u‘-

decreases steadily as y increases, for 7> 3. Moreover, the value of the ratio for
y =3 is less than
3a

2se 1" <2
5 4

1 It is in fact true that r, > 6: ses GRoswaxK, Dissertation, Gottingen, 1913.
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Hence
1
2|rGeal<; :
r>0 4, ve = +*u 4
and so
’ 1 .—\M
-l = i
(2.331) 1ZrEy=rl< gV,

If now we write

) =1 + 1.9 + s(),

where f,(y) contains the terms of f(y) for which m =1, f,(y) those for which
m =2z, and [,(y) the remainder, we have

(2- 332) ) = Dlogp nlv..Zw ﬁ\w
»
mip—1) * -
(2. 333) fi(y) = MA|5 2 logp e~ =0 .—\w
pm>3

Hence, by (2.331), (2.232), and (2. 333), we have

21
fuly) =D (—1) T logp e—#v

4

SEE S VTG S VAR V4
47 y 2V y y

for all sufficiently small values of y. We have thus proved
Theorem 2.33. There is a constant K such that

ZSHMAI: _omﬁa...éA h.—\w

for all sufficiently small posits lues of y.
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Suppose now that
(2. 334) Py) = Dane—"¥
is a power-series in e—¥, convergent for y >0, and that

oy} > Ky~
for 0<y<y,. Suppose also that 0<sa<a. Then
Snrtanemny = s [l y)etde
i .
:3.\,\\,:.75..:_&:.:3 el+y)er—tdi=J,+J,,

say. The second integral tends to a finite limit as y—o. If 0<y<Zy,, the
=z

first integral is greater than

“S ”S:.
K @IJ: &w.\.la t.‘l‘_h-mzmiﬁv..nl.av .
I's) ) ¢ +y)> 2: (ut1) T'{a) :
¢

Hence there is a constant H such that
MSI-E:«I:! > mﬁnln

for all sufficiently small values of y. In particular we have

Theorem 2.331. If 0<s< W. there is a constant H such that

~ 1

MAI: ‘v e-v< _Hy' "1

for all sufficiently small values of y.
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2.34. In order to prove the actual assertion made by TsCHEBYSCHEF we have
to introduce a convergence factor Hmm 5 into the series (2. 334).

It is not difficult to prove that

@

u \.n-.._ss&.

0

1
log n

where
¢ e—widw
.E:Ha.+,& 3+cow§..
H
so that
QA€ "V 3 -
e CTEE
2 0
ns
\ POPE+y)dL+ \ YOPE+y)dt=J,+J,,

.h‘-

say. As before, J, tends to a finite limit as y—o. It is moreover easy to
see that

:u
e—vidy

I
Higyos \3‘.*. (logw)* 21‘ (log Sv.

A_on .'

as $—o. We can therefore choose 1 so that, if o<y<49,

1 Of. W. H. Youxne, Proc. London Math. Soc, ser. 2, vol. 12, pp. 41—70.
' We suppose that e, =0, @, =0, as evidently we may do without loss of gener-

ality.
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J, > K \ A_Mm v.:.;mwv.w
—0(1)+uK { o
_om 1ty
nly
ueEIS\-; ‘LIJ_A.:mui_

_om + _om

H ‘\la
V NQN—ON «\A2+Mva+—

Applying this result to Theorem 2.33, we obtain
Theorem 2.34. There is a constant H such that

I T H
y)= Q(—1) ? e~V L —

Vylog (1/y)
for all sufficiently small positive values of y.

We have thus established the truth of TSCREBYSCHEF's assertion, under the
assumption of the truth of the analogue of the RiEMANN hypothesis. The nat-
ure of the proof makes it seem almost certain that the assertion must be false
if the hypothesis is false, as the term w.—\w‘ of (2.332) must then be over-
whelmed by oscillatory terms of higher order. But, as we explained in 1. 2, we
have been unable to find a rigorous proof.

2.35. We have proved that

-1
MAIS 2 logp e~ PV ——

as y—o; and, when we remember the results of z.25, we are naturally Jed to
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enquire whether a similar result holds for the CESArO means formed from the
series

MT: log p.
If we denote RiEsz's mean of order &, formed from the series
mip—1)

Mn‘luv 2 —ON P,

by &%(w), we have

LA

(8 +1)I(s) L

(2. 351) ma?.vuul i~u3+-v+ﬁv HM:”We-&a
Lim

::;23
--2 ré+i+e %+lev.

where WAWV is in general' a power-series convergent for w>r.
w,

From (2. 351) it follows at once that

(2. 352) 8%{w) = 0(Vw),

a result which says the more the smaller is 4.
Let us consider in particular the case in which 6 =1. We have then

?
(- 353) o) =— Ma:...w ot lsv

But

_Ma?+¢_ M?S+uv_A M_e_. = M|I+lwmAw.

1 See the footnote to p. 140.
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by (2.325). Hence

(2. 354) ?.?&.AW—\M‘

for all sufficiently large values of w.
Let us now write

(2-355) &' (w) = #}(0) + 8} (w) + 8} (),

where s} (w), 8,(w), and s](w) are formed respectively from the terms of the
series for which m =1, m =2, and m>3. Then

(2. 3561) si(w) = Jlogp Tl vv M__omsv Vo,
p<a w.A w

if w is large enough. Also

mp—1) - ,
(2.3562) s8i(w) = MA|¢ * logp A~I - QAN log p) = Q:\EV.
"3 pM < w mI=3,pM < o

From (2. 354), (2. 355), (2: 3561), and (2. 3562) it follows that

p—1 _
(2- 3563) s(w) = D—1) * logp Anlmvﬂlm_\e

p<®

for all sufficiently large values of w.
We have thus proved

Theorem 2.35. Riksz’s or CEsARO’s mean of the first order, formed from
the series

dald _ow P,

tends o — o as w— o, at least as rapidly as a constant multiple of — V.
From this we can deduce without difficulty
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Theorem 2.361. The corresponding means, formed from the series

p—1
pACS))
. . Vo

tend to — o at least as rapidly as a constant multiple of — fog &'

Theorem 2,33 is a corollary of theorem 2.35, and Theorem 2.34 of Theo-
rem 2.351: the deduction being in either case of the ordinary ’Abelian’ type.

In concluding this sub-section we may repeat that, as has already been point-
ed out in 1.5, the theorems here proved gain greatly in interest when consider-
ed in conjunction with those which may be established by the methods of
Section 5.

2. 4.

The mean value of

oA L
wAn+::

2. 41. Lanpav and ScHNEE' have shown that

T
(2. 411) \_N..Q+.c_:=n6u 2T

~'r

when uv -» and it is an easy deduction? that

T
(2. 4117) fize it o (2 (2 —2 )
l.u.

when RAW. We propose now to complete these results by proving

Theorem 2. 41. We have

T
\_mAw.T::.&Znﬂ._zmS.
“r

* See Laxoau, Handbuch, p. 816.
? Using the functional equation.
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We shall require some preliminary lemmas. We write

Q:
fsa \ ”\.,.@fasva
ut—1

Lemma 2. 411. If « and the real part of y are positive, then

* + i
Hy =1, T. ()y=")'ds = 2K, (2y),
l‘os

y—* having its principal value.

It is unnecessary to give the details of the proof of this formula which depends
(like that of the *CAHEN-MELLIN’ formula) merely on a straightforward application
of Cavony’s Theorem.

Lemma 2. 412. If y—re'?, where _iA =|.aA el and r — o, then

H(y) = ﬁi\w? +o( )}

uniformly in 9.
This is a known result.!
Lemma 2. 413. If {(z) is positive and conti 8, and

f(z) = O(e*)

for all positive values of 3; and if
,\\Anvnl.u&azmmlahﬁv.
¢

where a >0 and L(zx) is a finite product of logarithmic factors
(log z) (loglog z)e. ... .,

as ¢ —o; then

k&.ahQJ
Tt +a)

m.
\ f()dt o
&

This is the analogue for integrals of a theorem first proved by us in the
Proc. London Math. Soc., ser. 2, vol. 13, pp. 180 ef seg. This latter theorem redu-

1 a<=:.._..—xn= and Warsox, Modern L:i.\?u. ed. 2, pp. 367, 377
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ces, when ¢, —a,=..... =0, to a special case of Lemma 2. 113. The proofs for
series and for integrals are in all important respects the same.

2. 42. If in Lemma 2. 417 we suppose x > W‘ write ny for y, multiply by

d(n), the number of divisors of n, and sum, we obtain

x4io
(2. 421) NH:R:.?E?ZLV::U Nd(n)H (ny).
x—E® 1

We now use Cauciy’s Theorem to replace the integral by one taken along the

L. There is a pole at a= w of order 2, and the residue is

4

line ¢ =
M«w?m —logy —zlog 2),

where A is EULER’s constant. Thus

i .
1 - . N x - e
(2. 422) nq:..\ {I'(a)i(28)y—") ds = N_u&?:::.i — u...\akl_on.elnwomnvi,mJT.v.
1Y
—_—w

+

say. In this formunla we write

,n:.-dn.»mlw -v:.m?u?

I(s)i(zs) =

§(28) = LM +~:vum:=.

and we obtain
) 0206
.lni& i Am dt=8+8.
(:..u\ls I +A«n Y
4
Finally we write!

y =e's,

where oMnAwa. and we have

! These transformations are the same as those used by Hamvy, Comptes Rendus, 6 April 1914
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o= H 1.
n‘ E(z2l) n«i&ﬂ«w.a?@+> ,

(2. 423) "
BEA LR <
4
where
(2. 4241) m.ﬁM_&?;I?SR.,.;.
1
(2. 4242) mfnI“lol..ail»_omnl_omalmnv.

Lw—e¢ and that e—o. In the first place

2. 43. We now suppose that e=_

it is obvious that
(2. 431) §'=0(1).

Further, by Lemma 2. 472, we hawe

H(nuett) = :M¢n -
n

Va

Iw..nlu_.igua,....-_:n..*. QAaln:aoe.n‘.

and it is plain that the contribution of the last term to S is of the form O(1).
Hence we may write

o

n.m . s
s i) u.k : G‘c @t;.:.u M_&mvmt?ieg:t._-i +0(1).
L, tatt 2 Va
4
But
cose+isina==t+e+0(:,
e—2nnicosa + ssina) e—tnxc+0(neh
= @ 2R nn + Hm-me?sv.

and
& X Vn d(n)s—2nxe+ Onet — cT AT i::(:.u =o(1).
We may therefore replace the series on the right hand side of (2. 432) by

,.:,:3:.::
N__—\: a~4
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But
M&?v oo vlog v,
1

M&QL cozVwlogr;

and so
N&HSV e—2nne oo .—\M.m_ow va .

Henc we have

(EE)* sy oo ® V: 3},
(2. 433) .\ T st gos g »m_omAm
N+ 4t
4
We may replace the lower limit by o, since the part of the integral for
which ¢ < o is plainly of no importance. Doing this, and putting 2¢= u, we obtain

sy,

2. 434)
(2. 434 E e
4

2. 44. It follows from (2. 434) and Lemma 2. 4z7, that

:1&:&: o~ mw, log va .

T
= .a
EQ) ) " ducoVzrTlogT.

(2. 441) I
]&.ﬂn
4
But
5 —law 3
zor Yzl
M...ﬂ- 2

4

so that
.ml:.ndn_\ﬂsanu.

bw +:.v_

156 G. H. Hardy and J. E. Littlewood.

And if we write
z
S?Tu,\_ A +:V_ &

we have
T

T
* EV - \,_\msgzv&:
i

-Vrom -1 ‘e_\ﬁ{:

"

znﬂ__anﬂ.|\._:m:&=
)

~TlogT,

which is equivalent to the result of Theorem 2.41

2. 5.

The series
M,:?uv et
n

and other similar series.

In this sub-section we shall be concerned with some formulae which
We have no satis-

2. S5I. i
were suggested to us by some work of Mr S. RAMANUJAN
factory proof of the truth of the formulae, though this is highly probable; but

tho g se- surious tHHt it seems worth while to mention them
If —1<2<o0 and « > o0, then

x+io

28
—e—lafm) o T
1—e—(aln »:.-\A I'(s)ds.

x—f®

{2. 511)
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Hence
x4s®
-2 P g Il
(2. 512) M,: M”mv e—talnl o M—F.vmmv {1 — nl....:iv = ‘N\mn.ak a2 ﬁwﬂ“ﬂav&«.
But
X
I'(s) :r;.m szlwv.
Lix—z8)" L(ze) °
and so "
w xfse N- g hv
g y t?v — (el AP ey = % u.|.|| et
(& 513) N_. n ¢ 237 5L A V (28) de.

If now we assume that we may transform the last integral by moving the
path of integration parallel to itself across the line ¢ NW. and introducing the

obvious correction due to the poles of the subject of integration,! we obtain

Asw .~ ~-—8 r
(2.514) M_13 Li%!&:SL Aa y A?&lvm..lmlha MAL * :M,J
i—iw®

where “ <2 AW. This assumption of course includes that of the convergence of

the series last written.

But
Atiew -NJ Daicrg - 1+iw ,
ﬁu.....bﬁ . IAmm.lvlvm-H.anM.iH..v....‘eﬁv» ~.Awi~'m-.

if @@ =m. Also, transforming the last integral by the substitution

1
er.-lh- -

1 In forming the series of regidues we have assumed, for simplicity, that the poles are
all simple.
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we obtain
»#mm g x+.u
] —
NQ.LA ) r Atl..Taum::: ) °r®as,
A—iw x—1m

where — 1 <x<o; and the last expression is equal to
B o—tatur,
n

Hence

C(28)

(2. 515) L w..AA:v A I..V aeuMEa(iE%

Substituting in (2. 514), and multiplying by V&, we obtain

a

(2. 516) —fs; 1) g — vy V1L S
~N.. n © QN_ e »_\RM w. —pe.

It follows from symmetry that we must have

2. T3l
—\a N. w;ﬁ o -\QMlyIA@v fe=o,
and this relation wmay be verified without difficulty.

2. 52. In order to obtain a satisfactory proof of (2. 516), it would be enough
to show that

48T I° ,Ihv

‘1. Laa) 44O

x$iT

when 7 — w through an appropriately chosen sequence of values. It would cer-
tainly be enough, for example, to show that there is such a sequence (7',) for which

(2. s21) _Qa_vnlﬁalgv.

(>0, t= N.vaAIQ.MPv.
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It would even be enough to show that the inequality {2. 521) holds on an appro-
priate sequence of curves each stretching from o==x to ¢ =1. The cxistence
of such a sequence seems highly probable: it is highly probable, in fact, that the
series on the right hand side of (2. 516) is not merely convergent but very
rapidly convergent. But we are quite unable to prove this, even when we assume
the RIEMANN hypothesis.?

2. 53. Mr RaMaNuJAN has indicated to us a generalisation of the formula
(2. 516). Suppose that ¢(z) and y(x) are a pair of ’reciprocal functions’ connected
by the relations

(2. 531) v\,iuv coszurdr = “ Vayu), ,\.s?v..g 2uzdr = “ Vap(u),
¥

and let us write

®

(2. 532) T.l_ p@)dz = I'(8)Z,(8), T.L (z)dz = I'(8)Z,(s).

[ 0

The simplest case is that in which

plx) = Y(x) ===, Z,(s) = Z,(s) =

in this case the formulae reduce to those of 2. 51. Then it can be shown that,
if ¢ and ¥ satisfy certain conditions,*

(2. 533) N?lavﬂqalwn.ﬁ?vmiwua Z.(s).

We have also (again of course subject to certain restrictions on ¢ and y)

x+-8 n+-5
(2.534) ' @) 2ni, —*ds, Y(z)= Nqﬂ.\ r(8)Z,(s)z—*ds,
x—iw X—i®

for an appropriate value of x.?

! We can prove that some such sequence of curves as is referred to above exists, and
that our series can be rendered convergent by some process of bracketing terms: but we can
prove nothing about the distribution of the curves or the size of the brackets.

' As we do not profess to be able to give rigorous proofs of the main formulae of this
sub-section, it seems hardly worth which to state such conditions in detail.

* MeLLiv, Acta mathematica, vol. 25, 1902, pp. 139—164, 165—184 (p. 159): see also NieLsex,
Handbuch der Theorie der Gamma-Funktion, pp. 221 et seq.
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We can use the first formula (2. 534) to express the series
. o Q.v ¢ FJ

in the form of a definite integral. Carrying out a series of trapsformations ana-
logous to those of 2. 51, with the aid of (2. 533) and the functional equations
satisfied by the Gamma and Zeta-Functions, we are led finally to the formulae

(2. 535) _\gw..ﬁ.ei ‘ §M._§s§

1 gwI'(1—0%, (1 —@)a*
« n.:;

1 gI'(x—e)Z,(1 — )8

7 ')

where af = 7.
2. 34. Let us return for a moment to the formula (2. 516). We have

L w(—Dretr G uin) — 1)Pal®
(2. 541) E&anE ~tmr = 3 m_w R B Meﬂ%ﬂ

1 p=1 pel p=1

an integral function of a. And

['4
(2. 542) _\Mﬁal_\:iulwwi !i‘ -

when afi ==, If we assume the RIMANN hypothesis, and the absolute conver-
gence of

I—p

M&l»
e

then the right hand side of (z. 542) is of the form
0(1)

when e—o and g—®. Writing y for g% and observing that F(e)—o as
a—0 we see that

o
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=% _ (=g _
(2 543) ESI..M_ 1(zp+n) oly~)

when y— .
Now it has been proved by MaroeL Rigsz that!

(2. 544) : \es?.isé um“ﬂlmvu.
(1]

This formula certainly holds if o <s<1r. If it could be proved to hold for

- MAQM 0, the truth of the RiEMaNN hypothesis would follow. The hypothesis

is therefore certainly true if

(2. 545) P =0, ~5*)

for all positive values of 4. The result of our previous analysis is thercfore to
suggest that the truth of (2. 545) is a necessary and sufficient condition for the
truth of the RieMaNN hypothesis. It is not difficult to prove that the result thus
suggested is in fact true. For LitrLEwoop? has shown that, if the RiEMaNN
hypothesis is true, the series

M :?&

=g+.
is convergent for all positive values of ¢, so that

(2. 546) M(v,n) = M.W?BIQA _+.v

v

uniformly in n. Hence

pli(2p+1)

o« v—1 L)
(2. 547) I%ﬂM:Pllshﬁs:IMW.%WWS%BM + =P +P,
1 1 v

* Bee Riuxz, Acta mathematica, vol. 40, 1916, pp. 85—190. H,_E actual formula communi-

cated to us by Rixsz (in 1912) was not this one, nor the formula for g contained in his memoir,

Al of these formulae may be deduced from MeLLix's

but the analogous formula for

{0 + 1y

inversion formula already referred to in 2.53. The idea of obtaining a necessary and sufficient

condition of this character for the truth of the Riemanx hypothesis is of course Rirsz's and not ours.
* Comptes Rendus, 29 Jan. 1912,
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say, where » =[g'—¢]. Now
* —
(2.5471) P,= _:M_i r.w_..YnN&? n).pe=uinn o, 3%) - olp2+%),

where 24 — 3 ‘¢ —¢e?; and

2
1,
(2-5472) P, = O(ve= ") = o7 2**").
From (2. 547), (2. 5471) and (2. 5472) it follows that
1
(2- 548) P =ols™ ) = o(y™4*9).
3.

The series Y, y—vesiriostz0)

3. 1. The results of this section will be stated on the assumption that the
Riemany hypothesis is true. The truth of the hypothesis is not essential to our
argument, and our results remain significant without it. But their interest de-
pends to a considerable extent on the truth of the hypotbesis, and the assump-
tion that it is truec enables us to state them in a simpler form than would be
otherwise attainable.

We shall then denote the complex zeros of (s) by ¢— “ + ¢y, where y is

real. It has been proved by LaNpau! that

(3. 111) 2z =0(log T)
0<7<T
if z is real and not of the form z™, and
(3. 112) Da=— T logp+0(log )
o<r<?
if z=pm If we assume the truth of the RieMaNN hypothesis, these results

may be stated in the form

' Math. Annalen, vol. 71, 1912, pp. 5.18—564.
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(3. 121) Deiviee = O(log T),
01T
T
(3. 122) 8% = — nqa_ewulﬂ O(log T).

0<y<T

In this scction we shall apply an argument similar in principle to LANDAU’s,
but of a rather more intricate character, to the series

M yoweoiriog0)

where a,f, and v arc rcal and the first two positive. The principal result is
Theorem 3. 1. If a, 8, and w are real, and a and 0 positive, then

1+a

tf w< " and
2

Mﬂttaa.«,:&:_e = Q(log T')
0y < T

if w= 1ta, If w< 148 hen the series is convergent when continued lo infinity.

H 2
These results hold uniformly in any interval 0 <0, <0<40,.

The result is trivial when a> 1. We may therefore suppose that a <1.

3. 2. Suppose that the theorem has been proved in the special case in
which w=0. Let

b, = esivigrd)

and
o) = Xb,,
eA».Ma
80 that
14a
S?.V.HQAﬂlu! .
Then

N
§ Plyn) —@yn—
3 eb, =3 lﬁxm...kl.v
0<r< T 1
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where N is the largest number such that y, <. Applying the method of partia)
summation, we obtain

zl. .
Mﬁss.MS,,S...li._v+s§3;
07T 1

‘n4l

N—1 :
= ENSS\L,‘ wu—tdu+ dynyy”
1
n

N
. e\s?;lsli: F Dy rR"

.

7

m. :,alsl_ _|+I!Ev
HO\: 2 du+O\T 3
%.—

and the general result of Theorem 3. 1 follows immediately. It is therefore suffic-
ient to prove the theorem when w=o.

It should be observed that the O’s which occur in this argument are uni-
form in ¢, when 0<#,<f<#0,; that is to say, the constants which they imply
are independent of 6. This remark applies to the whole discussion which follows.

3. 31. We choose numbers « and & such that

(3. 311) an.gVo.aa:]:AM“
and we denote by C the rectangle
(1+6+4,1+0+T¢, —2p—1+Ti, —2p—~—1+14),

where p is a large positive integer, and T a large positive number differing from
any y. This being so, we consider the integral

g 1
(3. 312) \nu.a-.l..aa.a| 2"
&

1
where z = 6§ and log(—is), z*and s 2 have their principal values. An applica-
tion of Cavcny’s Theorem gives the formula
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—+a+.~.- Iﬂtl_.vﬂ.- |n!|_+- _+¢+m

(3. 313)  200i Qeoriosi—ivigeg ” n\ k v+ ‘

J «
or<T 14043 1404 T8 —2p—14T% —2p—1+i

=I+L+1,+1,,

say. When ¢ is fixed and o — — oo, e2*1%6(=i4 tends to zero like eevloslel, It fol-
lows that I,—o when p— o, and 259 I, and 7, tend to limits I, and I,, the
latter being independent of 7. Thus

’ 1 1+a
(3-314)  zuri Qeoeiniivgeg ¥ — I, 41,4+ 0()=1,4 [+ O\T * v,

0<r<?T
where
s Ti A )
8
(3. 315) I, = | easiost—ing—sg~ - m?vaa
143474

3. 32. We shall now prove that the term I, in (3. 314) may be omitted.
We write

o4 Ti —14+Ti
(3- 321) I, u-‘ =I,,+1,,
' T 1484 T

The discussion of I,,, is simple. If 8=0+ 7% and ¢ <—1, we have

aa_aa?:. )4+ aTarctsaia] T)

_aalon.lm:_-ﬂn- Aﬂ_uu.
|zt) =2
)
I»e_A 1,
and
$'(e) _
20y = OllogT),

uniformly for ¢ < —z.! Hence

t Lawpav, Handbuch, p. 336.
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(3. 322) 1,,=0logT ‘ (zTeydo
=1
ol 1.l
= _sa:._o& (z7's)

somewhat more difficult.
3. 33. We may write

o
(3.331) minwl 2 Tw

17-Ti<}

say. Then
(3.332)

uniformly for -1 <o <1-+4.2
We now write

—14 T

= O(T-)'=

2'te) -
ANE " 2 s — of

-TI<1

Z,(8) == OQog T')

-o(z'?"). ,

Thus the integral I,,, is without importance.

The discussion of I,,, is

= Z,(8) + Z,(s),

6339 D= [emwctnzg (2,00 + G do= L+ Do,

148418

say. It follows from (3. 332) that

(3.334) N»LLHQA

where

(3. 335)

140

~2log T \ n..iev —O(T?1og T),

=1

HA +avaAH+a

Thus the integral I,,,,, is of no importance.

1 Observing that A I. wlere ry=

£o
1 LANDAV, m?aae:n? P 339

= 8%, and that log (x7%) > alog T'+ log x,.
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3. 34. On the other band

|-.w.~.-. N
(3. 341) L= T.._il..n;u....w.., .
ek AL ¢

We can transform each of these integrals, by Cavony’s Theorem, into an
integral along a semicircle described on the line (— 1+ T4, 1+ 4+ T's), taking
the semicircle above or below the line according as y< T or y > 7T.* Each inte-
gral is of the form O(T?) and their number is of the form O(log7). Hence

R 1+a
(3- 342) Iy, =0(T?logT) = O\T 2 V
From (3. 321), (3. 322), (3. 333), (3. 334), (3. 335), and (3. 342) it follows that
(3.343) 1,=0 si.,avv

and from (3. 314) and (3. 343) that

1 1+a
(3. 344) S.:.Mn:_il...ieu% =1, +0\T 3 v
0<y< T
Thas the result of (3. 3) is to reduce the problem to the discussion of I,.
3. 4. The main difficulty in the proof of the theorem lies in the discussion
of the integral

1484 T8 f N.Av
aslog{—i) —2%5\8
(3. 41) I, = [eatlogl-ingg 2 n?v&a.
14344

We observe first that, when ¢ is fixed,
eanlog(—is) — Ah + QAunzna:_en:aa.

where A4 is a constant. The contribution to I, of the term QAMV is of the form

T, . 144
(3. 42) Q\nr..a\-l_&auuca.hv Hu,.Q T?* v
i

! Cf. Lanuav, t.:,? Anmalen, vol. 71, 1912, p. 557,
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1
and is therefore without importance. For similar reasons we may replace s 2°

1
in I,, by (s)"2" The problem is then reduced to the study of the integral

(1 +d+1it)

r
= aitlogt it el
(3. 43) J .T ok £ 35 :.m:fuf.:&.
I

Replacing {'/L by the DIRICHLET’s series which represents it, and making an
obvious formal transformation, we obtain

A(n) .
(3. 44) J=— M..:._f i,
where
a
(3. 45) T VAl
4
and
T
(3. 46) e = ‘ tPeaitionitingy.
J
We write
An) ..
G.47) Je— (24 2+ ) N0 =0, 40,40,
1 2 3

say, where J, contains the terms (if any) for which

(3- 481) n+1<ze,

J, those for which

(3. 482) ze* —1<n<z(eT)* +1,
and J, those for which

(3. 483) n>z(eT)+1.

3. 51. The discussion of J, and J, is simple, and depends on a lemma which
will be useful to us later in the paper.
Lemma 3. 51. There is a number K, independent of =,, v,, and &, such that

v\..an..:en.:m.&u A—O@?Nﬂ 1€)
s

A1)
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when o < § <er, <er,, and

1

'\,n-: log(¢18)dt | < ﬂﬂ&m\ wisl
S /€T,

A1l
when §>er,>er,.
Suppose, for example, that § <er,. It is plain that we may consider the
real and imaginary parts of the integral separately. If we put

w=tlog(t/$),
8o that

&8 =log A Z)s

and observe that w increases steadily, say from w, to w,, as ¢ increases from
7, to 7,, we obtain

i< w3

v\,nom awdt= | cosaw _om Ao_\ @

fl w1
But log(et/£) is positive, and increases as ¢ increases. Hence

-.. w3
.\ cosquw di = _oﬂmﬂww cosawdw,

where w, <w, <w,. The truth of the lemma follows immediately.

3. 52. We are now in a position to discuss J, and J,. We begin with J,,
which exists only if ze? > 2.

The real part of j(§) is

T
(3. 521) \NnaomT:om nv &.lﬂn\nom atlog mT:
i Ti

where 1 <T,<T. Since

- —
(3.522) ml,—\MAnAoS:
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the right hand side of (3. 521) is less in absolute valuc than a constant multiple of

Tr 1r

fogie, /%) < logle/ &)

The same argument may be applied to the imaginary part of j(§), so that
we may write

(3. 523) i(§) ol T 1
)= ONiog e/ )]
Also
e\® xe® v
(3 524) @ .
e I v
(3. 525) Tog C = Zlog AL
where » >n + 1. Hence
] _olmey 1@ 1 V_ e
G- 520) da O_N.._uAW_la_t_cn?\avvﬂeﬁi =0iT*

3. 53- The discussion of J, is similar. It will be sufficient to write down
the formulae which correspond to the formulae (3. 522), ete. They are

(3 532) §= ﬁ\“v T
(3 533) 7€) = o__om r\nﬁw
n n
(3. 534) &.' TzeTr Ty
(3. 535) log A&.V _oi v

(where »<n —1J),

(3.536) .\.nc__?M A 1

\ormiao(r')
wsrer™ 0 log(n/ ) ‘

' Laxvau, Handbuch, p- 806.
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3. 61. The discussion of J is accordingly reduced to that of J,. In order
to discuss J, we observe! that zlog(z /&) is stationary when v =§/e. This point
iz the critical point in the integral j(¥).. It falls in the range (1, T) if

e<§<eT
or

zer<m<z(eT)s.

This condition is certainly satisfied by every term of J, except possibly the first
and last, and no serious modification is required, for these two possibly excep-
tional terms, in the analysis which follows.?

We write
fle T,
(3. 611) i = [+ \ tpewition €19t = ,(£) + fu(5).
Then
+1 +~ .
(3. 6121) 7i11§) hA vx \ uesiseledy = A vn &),
€ie
B+~nﬂ.‘m p+
(3. 6122) 7AE) = A v v\.i{a..s?&: - A v k, (%),
where
(3. 613) w=ulogu—u.

In general e/§<1<eT /&, and we write further

— 1—¢
ﬁu. mnAuv F._ + F.».
_I-

14e oT(§

(3. 6142) un\ ,\..u k,,, + k-,

! The fundawmental idea in the analysis which follows is the same as that of Lanpau's
memoir "Uber die Angzah!l der Gitterpunkte in gewissen Bereichen’ (Gittinger Nackrichien, 1912,
pp. 687—771). )

* The terms have to be retained in J, because £ /¢, though outside the range of integra-
tion, may be very near to one of the limits.
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where
g=T—ua

« being the number defined at the beginning of 3. 31. If, however, e/£>1 or
eT/$<1, as may happen, each with one term only, we must write

1+s -7»
(3. 6151) ko= |\ l.\ =kyy + Ky,
i 18
or
1—¢
(3. 6152) k, "'\ a\,ﬂw?. + ks,
l—¢ oT]

These exceptional cases need not detain us further, as the treatment of k,
in the general case covers a fortiors that of k, in the special case, and vice versa.
Each of the formulae (3. 6141)—(3. 6152), however, may in certain cases require
to be interpreted in the light of a further convention. It may happen, for
example, that 1—e&<e/E<1. In this case, in the formula (3. 6142), we must
regard k,,, as non-existent, and the subject of integration in as having the value
zero for 1—e<u<e/§, and a similar understanding may be necessary in the
other formulae. If regard is paid to these conventions, the analysis needed in
every case is included in that which refers explicitly to the normal case in which

e/i<r—e<i<ri+e<eTl/&.

We may therefore conduct our argument as if these conditions were always
satisfied. And we have

e E\p+1 .
(3. 616) 36 = ()7 e+ by a8+ ) + B ).

3. 62. The really important terms on the right hand side of (3. 616) are
k,,, and k,,,. We shall discuss k,,, and k,,, first.
The real part of %,,, is

1—e¢ 1—¢2 1—¢
y alw tur aSw (1—e)? nw.sv
(3. 621) .\ezaomg . T«:ﬂ ‘mmlmcou ‘l‘v&sl_om:!&\oo* S dw
ofé w—el§ w=i

where e/§<i<1—e. A similar argument may be applied to the imaginary
part. Also
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_cmﬂml& =0 AHV.

Jom ) -0 (3).

Fa

and

for all values of 2 and 4'. It follows that
(3. 622) iuorL of L

Similarly, the real-part of k,,, is

T eTii

akw avs - eT auS dw

(3. 623) ‘:reom_ﬁ P vaa.ﬂ\—owzaow V&S A Vv\ng e |logu
1+e u=l4e

log2

“-2

LIS [ (59)

where
1+e<d<i'<eT/§,

and a similar argument may be applied to the imaginary part. Hence

Tr+a
(3. 624) k=0 &_::vnc?m:v.

3. 63. We shall now consider k,,, and k,,,. It is here that we are for
the first time in touch with the real kernel of the problem. The two integrals
are amenable to the same treatment, and we may confine our attention to one
of them, say k&, ,.

We write

%=1+,
80 that o<pu<e¢ and
uP =1+ 0(n),
w=ulogyu—u=—1 +w.=.+ O(u®),
eoitw e oy g (aif[ )+ (aiint] 20} + OG1®

= e—itla+@itiize (1 + O(Ep).
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Then

&
(3. 631) ky, = e=stile | (1 4 O(u) + O(§ %)) eaiirttzegy
[}

1
- cﬁmu ,_v + O(e?) 4 O(5e)

~0(:72) + 0110y 4 O(ET~19).

Combining (3. 631) with (3. 622) and (3. 624), and substituting in (3. 610),
we obtain

1
(3.632) &) - 0" ?) 4 O(Er+1T—2) 4 O(§r+2T~ 1) + O(§pTo) 4 O(Tr+n),

3. 64. We can now complete our discussion of J,. We have

.\u.” 'M. Aln) va.

:I;:
ref— 1< n<x(eT®+1

A .
FARIES Bl
n < 0(19)

the symbolism used last implying that the summation is extended to all positive
integers n less than some fixed multiple of 7¢. We have now to estimate the
five sums §,,8,, 8,, 8,, 8,, obtained by substituting in turn for |7(£)] the five
terms on the right hand side of (3. 632).

In the first place

' _7(n) .r.e._._
(3. 641) h...ﬂAW_Gsva_.; QAv nv

= QM\::V:?»H—ITL

5 < 0(79)
=02 A(n)n 'l

= < O(T9)

1+ a]

QAAN_nv\n\a‘v

HQAN...H:V.
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In the second place

8,=3 ZMogr+1r-1

ni+e
(3. 642) ..Ae_ué.a ¥
= oT-:MkE:ﬂLLLv
n < O(T9)
2+a
xo“ensM\:sa ﬂi'_v
n < 0(19)
2+a
“Qnﬂ«lwaﬂﬂiv 2a _
2+a
ao_sf,txgv
1+a
qus‘, 3
since vamvm.
47 2
Thirdly
A a5
e -3 Hlosrr-w
» <0(79)
== Q*Q.lf.MkASV:\N.nI—Ib*
n < 0(19)

lo“suzMié:.ﬁLv
n < 0(T9)

4+4a
-0 “N.l»:Aﬂ_nv!»a‘ —

~o(7"3*-+)

- QAQ._‘muv

since g4a > 3,
2
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Fourthly,
8.=2 Alowrry

aivd

(3. 644) n < 0(19)

uoﬁ?Mk??nl_Lv

n < 0(79)

.no ?M\:iau“v
n < 0(1%)

ao?.u.:v

1+e
=0\T * v.
since a < 2.
2
Finally

A
(3. 645) 8, = M N_,mxw O(Tr+w)
» < 0(19)

== O (Tr+a)
neﬁﬂ_“aoa?v:v
i+a
=0\T ? v.
since =m+aA“. Combining (3. 641)—(3. 645), we see that
l4a
(3- 646) 5=0(7"39).
3. 7. We have thus proved that
1 i+a
(3.71) Deserogi—ivge, 2% gl 2 v‘
oy< T
uniformly in any positive interval of values of z. We now assume the truth of

the RiEMANN r%vo:.om.mm. and write W+ iy for ¢ and 6° for x. We have
Iwﬁ"ﬁﬁe.o!l-.e..*:e.eﬂul“ssne

mae_oil.su@ ,
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and
; iylogy + -al +ma+03
aglog(—ve) =aiylogy+ alogy+; 7
aglogh) == aiylogt + .wn logd,
. 1
Iha_omeui Me_omwluaé. + OAMV.
and so

1
it g0 2% i7log (7 9) m,
eaelopi—idigeo 2 Aeaivlglz T +0Av~¥
where A is a constant. It follows from (3. 71) that

(3.72) D eairtoniit) = OA%_]H\.vn
0<r< T

and the proof of Theorem 3. 1 is completed.

4
The zeros of { (s) on the line o = “

4. 1. In this section we prove that the number N,(T) of zeros of 5(s)

s

=&

on the line nﬁm. between the points “ and w+ T4, is of the form bAnI v
2

for all positive values of 2. As a matter of fact we prove rather more than

this, viz. that there is at least one zero of odd order between 7T and

i
T+T4*° for all sufficiently large values of 7T'.*
4. 2. We write

I_:lu.u..

{4. 21) w—ve * ~.$2;I:.vn‘m + :.VINS.

! Bee section 1 for a summary of previous results.
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Then

Vae
PEL
X()=—2¢2 _F (21)
LI
4
is real when ¢ is real. Let ¢ be any positive number. We shall prove that, if

T>7T,(¢), then X (1) changes its sign at least once in the interval Qﬂﬂfr@?

1
where H=T¢""" We may obviously suppose, without loss of generality, that e <>

5
There are two stages in the proof. The first consists in showing that
THH
(4. 22) \ks&n 0(T%)
7

for all positive values of d; and the second in showing that, if 6<e, and 7 is
large enough, then the cquation (4. 22) contradicts the assumption that X () is
of constant sign throughout the range of integration. The second stage of the
proof is the easier, and we shall discuss it first.!

Suppose then that (4. 22) is true, with d <&, and that X (¢) is of constant
sign throughout (7,7 + H). Then

u.u.h
\ IX(2)|dt = O(T),

T

N_.NN&
.s\ %.:T. ﬁ + :v__wﬁ + N:VT. =0(T").
Now

1

hnah-  J
_~.A_+:.v 2—\5«“-_1
A

14

as t—~wo. Hence

' The goneral idea used in this part of the proof is identical with that introduced by

Lawoav in his simplification of Harov's proof of the existence of an infinity of roots (see
Lanoav, Math. Annalen, vol. 76, 1915, pp. 212—243).
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T+H
_ ;..v_
R d = O(TY),

T+ H

s:LM + N:.v_inc.suiv,

+ 2T+ H)i

% cas=0(ri*?).

n+un.»

+E.~.¢ H)i

(4. 23) .\' ?EahcAﬁ.

P yeri

Applying Cavucny’s Theorem to the rectangle whose vertices are - + 271,

i, 2+2 i 4 2(T + H)i, we obtain
2+2Ts, 2 +2(T+H)i, and N+..Q.+ )i, we O
Ve
22T 24 2T+ Hyi o HUT+H) ', V
(4. 24) Jy+ I+ d= ‘ g (s)ds + ‘ s(s)ds + ‘ w?v&nlc?; .

* 3 1% 2427+ H)i
Lanr 24}

Now

1
Qaﬂcfﬁ

1
uniformly for 2 <g<z.! Hence

(4 25) a_aeﬁsﬂtv.. J,=olm LV

and from (4. 24) and (4. 25) it follows that

t Laspav, Handbuch, p. 868,
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1

(4. 26) &-HQA%.:V.
But

‘24T + Hi 242(T+ Hyi

I
J,= w‘ ..«a,-umf.r\ oy 2]
24T e+2Ti 2
n—2-2Ti 2 n—2- 2T+ H)

3
ﬂnm.+M_ logn W logn

= 2Hi+0(1);

+e

which contradicts (4. 26), since H = a: and & <e.
4. 3. The problem is therefore reduced to the proof of (4. 22). Using
Cavucny’s Theorem in a manner very similar to that of 4. 2, we obtain

ren SR _+“..+Ms+5.. VHTR
(4. 31) x:::ul; % \ \ v:%:
+~_. ._‘+T+E 3:..::.

=J,+J,+J,,

say. Now!
v,
{(z28) = QA% log \v

. 1
uniformly for - <¢< -, and

1
4 2
{(248) = O(logt)

uniformly for anA + - m Also

e s 3.~ (8) = QA«T»V

. I
uniformly for " <o < 2t Ma. Hence

-

f(s) = O (logt)

! Laxpav, L c. supra.
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uniformly for PR <¢ A 2 and

1
10-oli)
uniformly for “ MQMM + w% and so
(4. 32) f(s)=0(#")
uniformly for “ <0< “ +wu. It follows that

(4. 33) J =0(T%), J,=0(T?;
and the problem is accordingly reduced to that of proving that

1.1 2,
m+wo+_u.+~v-

(4. 34) [=3iJ,= ,\ {(s)ds = O(T?).

1,1
==~ -4, have
4- 4 Now, when ¢ N+ ; we

:.E flo)=n—"e Eir T.w?;‘m.l

We bave aleo, by a straightforward application of StirLiNG’s Theorem,

itlog{tfex: 1
(4 42) e i a.ﬁ?vl“maa: il .“.A + Qﬁmz

where A is a constant. The term QAWV in this equation may be neglected, for

its contribution to I is of the form
1
o1 *'5) = o(a).
We have also

1
m.,lu._m;eﬁﬁ..:_mv. (T<t<T+H),
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and the second term’s contribution is of the form

c??-_mﬂvni:_.

1 1
Thus we are at liberty to replace 2 by 7% in (4. 42), and to replace I in our
argument by

N T+ H »,

a
:.Sv nz .T.:R.::.M:_f::.& J ne =_+..‘ :8..:::3&

T

- %“_..M_ Dlennt) Sn_....w.

nl+o
say.

The integral @ (exn®) belongs to a type considered in 3. 4 and the following
sections;* and its behaviour depends cn the position of the point 7 == 2 n® with
reference to the interval (7,7 + H). At most one value of n can satisfy the

inequalities
Lo
T<an*<T+TH

so that wn? can fall inside (7', T + H) for at most one value of n. We denote

this value of n, if it exists, by »; if there be no such value, we denote by »
the largest value of n for which wn*<T. And we write

(4 44) 8=+ X+ X=8,+8+8,
1

say.

! For e < m....A.l. and a fortiori 4¢ <1—4&, Hence

wal. * uﬂ + ;IN.I%.I.«VAP
* We have
Slexnt)=4j, o(enn?, T+ H)—5, o(ean’, T),
where
T

Ja,p&, SI\ (Peattlogtild gy
1
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Then, in the first place, we have
1o s .
(4- 45) s, — o7 ) = o ().

Secondly, if n<»—2, we have, by Lemma 2. 432,

(4. 46) W(exwnt)=0 A 7 v

But

AR

and
T>u{v—1x)*, log n_v_cm?ll
Henoce
v —2 1
8,~0} P-—-—"-—=l=0(n",
1 n'+dlog a!.'
1 1
4. 47) g, =0(m*).
Similarly, if » > » +2, we have
D(enn®)=0|--—+ 5+
(449 _am Aqﬁ. 7]
' S+E
_omAnﬁqﬂ_EvﬂnA_on:l log e ]
““““ H
Q.+EA:?+:.._3@.—\(\_H‘ <log(v+1),
8,=0) }————l=0ny,
. ..+;_+:amA»iww

! Lanpav, Handbuch, p. 806.
* La¥pav, . c. supra.
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(4. 49) s.....vm.qui&.

From (4. 45), (4. 47) and (4. 49) it follows that

(4. 491) Tc?;r,vuo@,x

and our proof is therefore completed.

Theorem 4. 41. Let ¢ be any positive number. Then there is a number T, (¢)
such that the segment

1

Limi “+T.+ i,

where T > T, (¢), contains at least one zero of £ (8) of odd order.
As a corollary we have
Theorem 4. 42. The number N,(T) of zeros of L(s), on the line H“m+ Ti,

2’2
8 of the form

alzi-?)

for every positive value of 4.

5.

On the order of y(x)— x and of
I (x)— Lix.

5. 1. In this section we shall prove that
(5. 111)  Y(2) —2=Np{Vzlogloglogz), ¥(z)—z = Q4 (Vzlogloglog z),
i. e. that there exists a constaut K such that each of the inequalities
(5. 1r2)  @(x) —2> K Vzlogloglogx, Y (x)—z < — KVxlogloglog z,

is satisfied for arbitrarily large values of 2; and from these inequalities we shall
deduce the inequalities (1. 52). It is clear that we may base our proof on the
assumption that the RIEMANN hypothesis is true. If it is faise, then more is
true than our inequalities assert.!

* Lasoav, Handbuch, pp. 712 ef seq. e
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We shall found our proof on the formulae
(5. 121) 7n=g(n) + O(1),

where ¢ =g(z) is the function inverse to

1 1 +logazm,,
(5. 122) »ﬂngn:om.| ow b
and
130 Ve 2., 3 o),
z meT In

where 1 = logz, uniformly for T' > z*. Of these two formulae (5. 121) and (5. 131),
tho first is an immediate corollary of VoN MaNgoLpT’s formula
=1 Ltlgan L
an;ln“ﬁw;ow% oo T +0(logT)';
and the second is an immediate corollary of known formulae to be found in
Lanpav’s Handbuch.*
If we make T tend to infinity in (5. 131), we obtain

inyan 0(1),

(5. 132) e

since the series is known to be convergent.
5. 2. Let z=£+14n, and let F(z) be the function of z defined by the series

e 'n® 2 e—rali+in
(5. 21) F(z)= M;ﬂ...\u 2~

convergent for £>0. We shall consider the behaviour of this function in the
semi-infinite strip defined by the inequalities 0<§<1,7>1. Our object will
be to prove

Theorem 5. 2. If S F(z) ie the imaginary part of F(z) then

' It has been shown by Bouaz, Lannau, and Lirrewoop (»Sur la fonction £(s) dans le
voisinage de la droite o= w.. Bulleting de 1'Académie Royale de Belgigque, 1913, pp- 1144—1175)

that, on the Rimaxx hypothesia (which we are now assuming), the O in this formula and the
corresponding O in (5. 121) can each be replaced by o.
* See pp. 387, 861.
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'QN.ANVH Mml»am mmﬁ\Nwa = Qg (log log ),
] 3

—3F (z) =2, (log log 7),

in the semi-infinite strip o <E<1,>1'
We shall consider the first of these relations: the second can of course be

proved in a similar manner. And we shall begin by proving the following lemma.
Lemma 5. 2z1. We have

—3F(5+i5) ..Ma‘iz.mmm_x..mzm_o%v.
4 0

as §—o.
Suppose that n <u<n + 1. Then

(5. 22) g (u) == -

and so

glu)—g(n) =(u—n)g'(») (n<r<w)

=0 (1o a) =0

Hence
nlr:..uc‘!slnl..?v....:‘:.voﬁ log n
gl T ~+eA n v“
e=rali+id log n —
S +c@+i =L .

It should be observed that the constants implied by these O’s, and by those
which occur in the argument which follows, are independent of both u (or ») and §.
Let u, be a fixed positive number, and let g, =g(u,). Then

! To write
1) — 3 F(s) = QR (log log7),

for a lixed value of &, would be to assert the existence of a positive X such that
(2) —3F(5)> Kloglogy
for thiy value of £ and arbitrarily large values of v. To assert (1) in the strip 0 <€ <1,2>1

is to suuoq... the existence of a positive K such that (2) holds for arbitrarily large values of 5
(corresponding in general to different values of £).
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log u
©

X e—ti+ingm .&.«lﬁs o+ v&: +0(1)
(s.23)  F(E+if)= g *es gluw) \°

mlm..._.w.iahx n,\nfl‘muxm,.& +°Tv‘
=17 0 dwt o) T g

rs [
But, by (s. 22),

1 _logg—log 2w

g (u) 2
Hence .
fei0 d (et 108 9, _ 0 f10gl)’,
‘ .@.Q. : qp.mv.u 0.‘ — dg=0 ‘_owmv
o ”
and .
£ 44k 1 [etirine —log 27)dg + O(1).
(5. 24) F(E+i%) - nﬂm.‘ Ty (log g —log 27
”
Thus .
. 1 [e~iosin &g
(5. 25) —aFE+i= ] [ o gdg
R 3 e @
log ua.\nlwe sin wh&n +0W)
Y g
oo
=J,+J,+0(1),
say. But
; 1 [e—$9 8in &g log gdg + 0(1)
(5. 26) &.I»M\. g g g
- X ,\.mrll.w._m: ¥ (log w— log E)dw + 0 (1)
2 w
Iw_om Amv + O(1);
and
logz .olsum-:m —~ 0.
(5 27) dym e | =011
A
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From (5. 25), (5. 26), and (5. 27) it follows that -
(5. 28) —QFE+ ..@Zm_omE

>

as §—o.

5. 3. Lemma 5. 3. There is a constant a such that

—rns

(s 31) £

for all sufficiently small values of &

The number of »’s which lie between » and » + 1 is of the

form O (log »).
Hence

-

¢
ns

\ € g e~ "log »
. =0 :
3oz
mi>a v>%-1
I3
e
uo% i logu
%
e
H
b3

l. nls_:ng n nls
IQ \ S &S+_QNAWV.W;@;&E n
e a

and (5. 31) follows immediately.

5. 4. We shall now make use of a well-known theorem of DIRICHLET, the
fundamental importance of which in the theory of DIRICHLET's series was first
recognised by BorR.! Let us denote by » * the number which differs from z by

an integer and satisfies the inequalities — M <z < M Then DrricHLET's theorem

asserts that, given any positive numbers 7, (large), & (small), and N (integral),
there exists a v such that

. LS &
(5. 41) a..AnAﬂeAm+~v .
and L
Int
(5- 42) Sol<é

' See Bomr and Lawpav, Géthinger Nachrichien, 1910, pp. 303—330, and a number of later
papers by Boks.

* The notation is that of our first paper, ‘Some problems of Diophantine Approximation’,
Acta Mathematica, vol. 37, pp. 155—193.
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for n=1,2,....N.
Let
a
y=% ?m.znw.
Then o
|—QFE+in+ IFE +45)]

@ .
" Ns:x.,.\_ai._.w:M_si.&n i

PR A A
Am,. m.:\:alummm.‘.,w. »Ma :.w
1 ™ N+t ™

But, by (5. 42),

8inyuny =8in(yal + yut) =s8in (yaf + wi),

where
losl<zm§;
and so
)sin yay—sginya§| <20 §.
Hence
Y1
(5- 43) [ —QPE+i) + IFE+Hi§))<zaé 3.+~v_chmv

:._anA V + Q?VA _omA v
if & is small enough. It follows that the inequality

(5- 44) IFE+in> Am EfomA V =3 _om ‘mv

holds for every sufficiently small value of § and a corresponding value of 9

satisfying

(5. 43) %< Am:; +~v

5. 5 We are now in a position to prove Theorem 5. 2. Suppose that the

formula
—Q3F (& + in) =Qg(log logn)

is false. Then, given any positive number ¢, we have
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(5- 51) —Q3F (¢ +1iy) <zlog logy,

provided only
N> %, =1, (e}

Let us take 7, =17,: then (5. 51) bolds for all values of ; which satisfy (5. 45). We
have therefore

(5- 52) —JdFE+in)<elog :imf_ m+ _V.mv.
But

g log s + 5§ +1) oo g (3

s §—o. Thus (5. 52) contradicts (5. 44). Therefore (5. 51) must be false, and
the theorem is proved.

5. 6. Our next object is to prove

Theorem 5. 6. If we denote by 3 F (i7) the limit of SF (£ + in).as §—o,
so that

—QF(in = 07T
1 s
then
— 3 F(in) = Qg(log logr), — 3 F(in) == 2L (log logr).

If F(z) were regular for £ > o, or regular for £ >0 and continuous for E>o,
we could deduce Theorem 5. 6 from Theorem 5. 2 by means of a well-known
theorem of LiNDELOP. Our argument would in fact be much the same as that
used by Bour and Lanpav! in deducing

$(1 + 1t) = 2(log log?)
from

£(8) = R(log logt) (a2 1).

In the present case, however, F(z) is not continuous for £>0. We proceed
therefore to frame a modification of LINDELOY's theorem adapted for our purpose.
Lemma 5. 61. Suppose that
(i) f(2) is regular in the open semi-infinite strip
o<E<,y2n,>0;

(ii) /(§ + i) tends to a limit f(iv) as §—o, Jor every such value of n;
aa& S& posilive constants ;_. A,, and p exist such Sﬁ

! Q&::&&. Zan?d&.?a. 1910, p. 316.




The Riemann Zeta-function and the theory of the distribution of primes. 191

(iii) given any nwmber y greater than 1, we can find a positive number
& =4 (y) such that

:r..s
_ T | <4

for
0<E<dy, <y<y;!

(iv) _\An:Ahu

on the boundary of the sirip;

™ )| =0'e")

in the interior.
Then there is a consiant A such that

)] <4

in the interior and on the boundary of the strip.

There is plainly no real loss of generality in supposing that 7, is greater
than any number fixed Leforehand. Let us then choose a number ¢ greater
than p, and suppose that

f:c::—A«‘v & I .
Nl 2

If z—= Re'®, then
I

n—arc tan A”W' <o<ly
2 T T2

for all points of the strip, so that

némnA@]“ﬁv >0
and

R{(—iz)e>c.
If now

@ (2) == f(z)e—ei—in9,
where & is positive, then

(s 61) jo@)1< 4,
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at all points of the boundary. Also @(z)—o0 as 7~ =, uniformly for 0 <& <.
We can therefore choose a value of y, as large as we please, and such that

@ +iy)l<4, (0<E<a).

The inequality (5. 61) is then satisfied at all points of the boundary of the
rectangle R whose corners are (0,7,), (1,%), (1,%) and (o,y).

Now let 8 be the number d(y) of condition (iii), and let B’ be the left-hand,
and R" the right-hand, of the two rectangles into which R is divided by the
line § =4. It follows from condition (iii) that

(5. 62) D)< A, 4,

at all points in or on the boundary of R'. It is moreover evident that 4, > 1.
Hence (5. 0z) holds also on the boundary of R", and therefore, since D (z) is
regular in and on the boundary of R", inside R" also. Thus (5. 62) holds inside
and on the boundary of the whole rectangle R. Making ¢ tend to zero, as in
the proof of LINDELOF’s theorem, we see that

)<A= 44,

inside and on the boundary of R. Thus the lemma is proved, with 4 =4, 4,.

5. 7. We can now prove Theorem 5. 8. Let us suppose that the first
proposition asserted in the theorem is false. Then, given any positive number d,
there is an 7, such that

(5. 71) — 3 F(iy) <dloglogy
for 1>,

Let
(5. 72) f(z) = eiFW(logz)—K

where K >J. We shall show that f(z) satisfies all the conditions of Lemma 5. 61
in the strip o <&<1,7>2. That conditions (i) and (ii) are satisfied is evident,
and (iv) is satisfied in virtue of (5. 71). It remains to verify (iii) and (v).

It follows from (5. 131) that

M_m:.?:n o),
In
n>T

uniformly for 7 >a*=e**. If then we choose N so that ¥ N+1> €%, we have
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sinyny
(5. 73) N =0

uniformly for » > N,2<5<y. [t follows by partial summation that

(5. 74) M.MIEN&_.I 0(1),
N+t s
uniformly for £ >o0,2<y<y. Thus
|—3FGE+ M?av_ﬂ_M:fni?.vmﬁNﬂm_
<N&+ N 8i0 7y + Qe misinyy
zN._.._ ”m 2M+__ ”
=N§ + O(x),
)| log(sy) |¥

16+ .Mv_lnluwaf.eZE

16

log (& + i)
< N_ eNi+ N-.
where K, and K, are constants; so that condition (iii) is satisfied if we take

I
5= 5

We have finally to verify that f(z) satisfies condition (v). It is known that

Yiz)—z :
Va O(log z)*,

and it follows from (5. 131) that

(s 75) Mﬁ?lalos‘r
1 L]

uniformly for y,>a?==e*7. But, if y, <e®?, we have

ME.«NWA QM IIQM E"O?E.

1 In In < -a k< otn

Thus (5. 75) holds uniformly for all values of »; and so, by partial summation
we obtain
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—AIFE+in = Mal.anm.sxa.,ﬂeA.an.

(5. 76) }(z) = e0¢Mo(1) = O(e").

Thus condition (v) is satisfied with p=3.
The function f(z) therefore satisfies all the conditions of Lemma 5. 61, and so

f(z)=0(1)
for 0<§<1,5,>2. Hence

eiFi e O (log )X |
and so

(5. 77) —J3F(z)<z2Kloglogy

for all sufficiently large values of ;. But K, being restricted only to be greater
than 48, is arbitrarily small; and so (5. 77) is in contradiction with Theorem 6. 2
Tt follows that (5. 71) is false, and therefore Theorem B. 6 is true.

5. 8. From (5. 132) and Theorem 5. 8 we can at once deduce the theorem
which it is our main object to prove, viz.,

Theorem 5. 8. We have

Y (z)— z = Qa (V zlog log log z), ¥ (z) — z = 21 (Vzlog log log z).

All that remains is to deduce from these relations the corresponding rela-
tions which involve II{z). This deduction presents one point of interest. It
might be anticipated that nothing more than a partial summation would be
needed; and if the one-sided relations involving 2 and £, are replaced, in premiss
and conclusion, by a single relation involving £, this is actually so. But the
argument now required is a little more subtle and involves an appeal to the
results established in 2. 25 concerning the CEsiro means of ¥ (x) —az.

We have to show that

(5. 81) Mz)—Liz=9 A.xm log loglog =

log z v.hanvlh..al.ch»—\n_Ev

log 2

It is plainly enough to cstablish similar relations for the function

3
(=. 82) Eslia:“::\miw:@uv+.:.
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It is of course this function, and not II(z), which can be connected with y(z)
by a partial summation. We have in fact

logn

2

logn ’

-3 L Smom— W) - (1)
2

J(@)=Liz +0(1) + MESIAIE?! N—(r—1)}
H

logn
21 :
. _ X x
Liz+0(1) + M%E ..:_._cmwl_.oﬁa o
N o el CI
log {{z] + 1}’
(5. 83) @) —Liz— L0 =2 UM

‘03
2

- Mﬁﬁwﬂ + 0.
Let
x(2) = m»..h Yy —n}.
Then
x(n)=~0 Aa...v )
by Theorem 2. 25. Hence
(5. 84) M..w T MN s
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I x o I .N_.H“. L
H WN?&T A_omi.?+uz_oa?+ u};; + :u”_+u:_om=n_+~:.

_\m v
(logz)*

-0% 1_ i
M—\i_cm:vu *

- e?o_m“,_“.

From (5. 83) and (5. 84) it follows that

—Lig_ Y@ —=x Vg |.
(5. 8) @)~ Liz— L2 e“ﬂ@s.“.
and from (5. 85) and Theorem 5. 8 we deduce
Theorem 5. 81. We have

M(z) —Liz=Qg Axmmn._wm._ﬁv.is — Liz = 0 (Vlogloglog .av.
logz log x
We refer in the introduction (1. 5) to the other important applications which
may be made of the method of this section,

Additional Note.

While we bave been engaged on the final correction of the proofs of this memoir, which
was presented to the Acta Math tica in the of 1915, two very interesting notes
by M. pE LA Vaurte-Poussiv entitled 'Sur les zéros de £(s) de Riesann’ have appeared in
the Comptes Rendus (23 Oct. and 30 Oct. 1916). M. pE ra VaLiik-Poussiy obtains, by
methods quite unlike those which we use here, a considerable part of the results of section
4 (18 Nov. 1916). '

CORRECTIONS

P. 123, last line of footnote 4. For ‘Hilfsatz’ read ‘Hilfssatz’.

P. 135, line 3. Read log|s| for log|t|, with consequential changes below. See E. Landau, Math.
Zeitschrift, 1 (1918), 213-19, footnote 1 on pp. 213-14.

. 1865, line 8. For ‘Henc' read ‘Hence’.

. 161 (2.546). Read o(y—#+1).

P. 163 (3.122). Insert p—i™ before log p.

Theorem 3.1. In line 5 of the statement, replace < by >.

P. 165, line 2 from below. Read O(log|s|), though this is unimportant since s—#2logls} = O(1).

P. 172, line 12. For (3.6142) read (3.6141).

P- 172, line 13. Insert k,, after ‘in’,



COMMENTS
Two of the main results, namely Theorems 2.34 and 4.41, were icated to the Lond
Math ical Society at its ing on 11 February 1915. Bee Proceedings (2), 14, xiv—xvi.

§ 1. Comments on individual topics will appear under the appropriate sections.

§ 2.1. The hypothesis (iii) F(s) = O(e)may be omitted from Theorems 2.121, 2.13, 2.14, 2.16.
The basic form of this discovery, which clarifies the logical relationship b the pri b
theorem and the properties of {(8), is the Wiener-Ikehara theorem. This arose out of N. Wiener’s
general Tauberian theory, but, 8s & result of the work of S. Bochner, H. Heilbronn, and E. Landsu,
it can now be proved without reference to this theory. See, e.g. Widder, pp. 233-6; A. E,
Ingham, Proc. London Math, Soc. (2), 38 (1935), 458-80, Theorems 3(1), 2,(1). (See also the first
paragraph of the cc ts on 1921, 6.)

In connexion with § 2.15 (ii) we note that, besides omitting (iii) from the above theorems, we
may also omit the hypothesis (iv) Ay/A,_, - 1, provided that, in Theorems 2.121 and 2.13, we
supplement the ‘real’ alternative under (v) by the condition

limA;‘a, > 0 or limA ‘e, < O,
as the case may be (this suppl being redundant in Theorem 2.14 since (iv) is implied by the
other hypotheses). See Ingham, loc. cit. (§ 7 and top of p. 477).

The ‘equivalence’ concept described in footnote 2 on p. 120 lost its significance in 1949 when an
‘elementary’ proof of the prime-number theorem was found by A. Selberg and P. Erdés. See o.g.
Hardy and Wright, § 22.14-16.

§ 2.2. The conjecture at the end of § 2.24 (p. 139) may be proved by Landau's method {see below,
under § 2.3).

In the statement of Theorem 2.25 the word ‘80’ raises a question of logic, since the equivalence
theorem for Riesz and Ceshro means applies only to convergent means. In the present
context, however, the inference is valid (although the means oscillate) since A(n)—1 = Ologn),
from which it easily follows that the Riesz and Cesaro means of order 8 > 0 differ by O(logw).

§ 2.3. The desired proof of the converse of Theorem 2.34 was supplied simultaneously, and
without knowledge of the work of Hardy and Littlewood, by E. Landau, Math. Zeitschrift, 1
(1918), 1-24 (1-5, 24). Landau (ibid. 213-19) also gave a modified proof of the direct theorem.

§ 2.4. For further developments of mean-value theorems, see Titchmarsh, ch. 7.

In Lemma 2.413 the condition f(z) = 0(e*®) is superfluous. The special functions L{z) may be
replaced by any positive L(z) for which L{cz) ~ L(z) a8 z -» o for every fixed ¢ > 0; and other
proofs are now available. See Hardy, Divergent series (Oxford, 1949), Theorem 108 and the
notes on pp. 175-8 (which also include comments on the condition A,/A, , — I in Lemma 2.113,
analogous to those made above for Theorems 2.121-2.15); A. E, Ingham, Proc. London Math.
Soc. (3), 144 (1965), 167-73.

§2.5. For further comments on Ramanujan’s formula see Titchmarsh, §9.8.

§ 3. The Abel means of this series may be linked with the formulae of § 2.2. Thus, by an exten-
sion of (2.214) and an application of Stirling’s theorem to I'(ap), we find that the functions

F) = 3 A,

n=1
a(e) = T ywestiviostyh-en),
y>0
with w=4—f{a, y=refi*9 by =gq,

behave similarly (for our purpose) when ¢ -» 0+. We note that, when r = 7 and 1 /e is a positive
integer, f(y) ~ —f (me), so that s{e) is exactly of order ¢~2. This seems to indicate that, for suitable

a and 8, the index }(1+a) in (1.33) cannot be reduced, contrary to what is suggested at the end
of § 1.3.

§ 4. See comments following 1921, 2. .

§ 6. Il(@)— Liz is the function more usually denoted by m(z)—liz. .

By the use of other ‘absolute convergence factors’ in place o.n the e~7+f in (5.21), we can avoid
the Phragmén—Lindelsf theorem, and thus establish a closer link between the Analysis and mro
Arithmetic. See S. S8kewes, J. London Math, Soc. 8 (1933), 277-83; A, E. Ingham, Acta hl.&r
1 (1938), 201-11. [The latter proof may be further simplified by the use of the function
Ky = 1 (ly] < 1), 0(ly| > 1) in place of the R(y) actuslly used.] . ) .

The srguments based on the Riemann Hypothesis (RH) can be made * mmooo:&. by the insertion
of explicit tants in the inequaliti Thus (on RH) we can find a bE.:a—.S& X such that
n(z)—liz changessignin 2 < z < X. Thisis more difficult on mzwm :urm negation of w.wbﬂ although
the theoretical (2-result is ‘all the more true’ on NRH. Using an idea supplied by H.mzoiooa.
however, Skewes ( Proc. London Math. Soc. (3), 5 (1965), 48-70) worked out a voE.._u—o X’on Zm.wm
(or rather NH, where H is an approximation to RH calling for & slight mm::.mpmo in X). H.Om!.v_m
values (on H and NH) are X = ¢,(7-703) and X’ == ¢,(7-705), wheree,( ) is ann-fold exponential.
Thus X’ is an ditional ‘Skewes ber’. )

The difficulty with NRH (or NH) is that the effect of one zero may be largely neutralized by
interference from neighbouring zeros. Other methods of meeting this difficulty have been pro-
posed by G. Kreisel, J. Symbolic Logic, 17 (1952), 43-58, and by P. A,E.ma (see m.. N:nvo%.nr-.
J. London Math. Soc. 3¢ (1861), 451-60). A manuscript left by A. M. Turing contains new ideas
which it is reasonable to suppose will lead to an ditional Skewes ber of roughly o.rm.mwim
form as the above X (an e, instead of ¢,). The manuscript, however, is very ..o:m?.. arfd it i8 not
possible to summarize it here. We may mention, however, that Turing says that ?m.ﬁ.ma:on was
inspired by Ingham's paper referred to above (he uses a modified form of Hawrw...ﬂ s kernel R),
and that he plated ex ive calculation on the first 1000 or so zeros. It is to be hoped
that someone will carry out a complete proof on Turing’s lines. See also R. S. Lehman, Acta
Arith. 11 (1966), 397-410. ) . .

The seeming inaccessibility of an explicit solution of m(z) > liz (x > 2) is in striking contrast
to the situation in some analogous problems, such as the one mentioned at the end of § _m .H_.:..m.
if m(x; k, 1) denotes the number of primes p < x with p= l(mod k), the inequality
m(x; 4, 1) > w(z; 4, 3) has known solutions, of which the least is x = 26861. woo John Leech,
J. London Math. Soc. 32 (1957), 56-58; D. Shanks, Mathematical Tables and other aids to computa-
tion, 13 (1959), 272-84. The general problem of changes of sign of n(z; k,1,)—m(z; k, N-M and

iated fi ions has been idered from various aspects, but methods at present available
seem to lead in the main to partial or conditional solutions. See S. Knapowski and P. Turén,
Acta Math. Acad. Sci. Hung. 13 (1962), 200-314; 315-42; 343-64; 14 (1963), 31-42; 43-63; 65-78;
241-50; 251-68; Acta Arith. 9 (1964), 23-40; 10 (1064), 293-313; 11 (1965), 116-27; 147-61;
193-202; J. d’Analyse Mathématique 14 (1965), 267-74.




